↓ Skip to main content

The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children

Overview of attention for article published in Calcified Tissue International, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
103 Mendeley
Title
The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children
Published in
Calcified Tissue International, December 2016
DOI 10.1007/s00223-016-0218-3
Pubmed ID
Authors

Joshua N. Farr, Paul Dimitri

Abstract

A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 103 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 103 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 13%
Student > Master 11 11%
Student > Bachelor 11 11%
Researcher 7 7%
Student > Doctoral Student 7 7%
Other 19 18%
Unknown 35 34%
Readers by discipline Count As %
Medicine and Dentistry 29 28%
Sports and Recreations 9 9%
Nursing and Health Professions 7 7%
Agricultural and Biological Sciences 4 4%
Biochemistry, Genetics and Molecular Biology 3 3%
Other 11 11%
Unknown 40 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2017.
All research outputs
#14,304,007
of 22,925,760 outputs
Outputs from Calcified Tissue International
#1,265
of 1,761 outputs
Outputs of similar age
#228,867
of 419,924 outputs
Outputs of similar age from Calcified Tissue International
#8
of 18 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,761 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,924 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.