↓ Skip to main content

Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic

Overview of attention for article published in Environmental Science & Technology, January 2010
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
128 Dimensions

Readers on

mendeley
121 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic
Published in
Environmental Science & Technology, January 2010
DOI 10.1021/es902665n
Pubmed ID
Authors

Ludmilla Aristilde, Anastasios Melis, Garrison Sposito

Abstract

Recent microcosm studies have revealed that fluoroquinolone (FQ) antibiotics can have ecotoxicological impacts on photosynthetic organisms, but little is known about the mechanisms of toxicity. We employed a combination of modeling and experimental techniques to explore how FQs may have these unintended secondary toxic effects. Structure-activity analysis revealed that the quinolone ring and secondary amino group typically present in FQ antibiotics may mediate their action as quinone site inhibitors in photosystem II (PS-II), a key enzyme in photosynthetic electron transport. Follow-up molecular simulations involving nalidixic acid (Naldx), a nonfluorinated quinolone with a demonstrated adverse impact on photosynthesis, and ciprofloxacin (Cipro), the most commonly used FQ antibiotic, showed that both may interfere stereochemically with the catalytic activity of reaction center II (RC-II), the pheophytin-quinone-type center present in PS-II. Naldx can occupy the same binding site as the secondary quinone acceptor (Q(B)) in RC-II and interact with amino acid residues required for the enzymatic reduction of Q(B). Cipro binds in a somewhat different manner, suggesting a different mechanism of interference. Fluorescence induction kinetics, a common method of screening for PS-II inhibition, recorded for photoexcited thylakoid membranes isolated from Cipro-exposed spinach chloroplasts, indicated that Cipro interferes with the transfer of energy from excited antenna chlorophyll molecules to the reaction center in RC-II ([Cipro] >or= 5 microM in vitro and >or=10 microM in vivo) and thus delays the kinetics of photoreduction of the primary quinone acceptor (Q(A); [Cipro] >or= 0.6 microM in vitro). Spinach plants exposed to Cipro exhibited severe growth inhibition characterized by a decrease in both the synthesis of leaves and growth of the roots ([Cipro] >or= 0.5 microM in vivo). Our results thus demonstrate that Cipro and related FQ antibiotics may interfere with photosynthetic pathways, in addition to causing morphological deformities in higher plants.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Italy 1 <1%
Canada 1 <1%
United Kingdom 1 <1%
China 1 <1%
Poland 1 <1%
Unknown 114 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 20%
Researcher 19 16%
Student > Master 14 12%
Student > Bachelor 13 11%
Student > Doctoral Student 10 8%
Other 19 16%
Unknown 22 18%
Readers by discipline Count As %
Environmental Science 30 25%
Agricultural and Biological Sciences 24 20%
Chemistry 12 10%
Engineering 6 5%
Medicine and Dentistry 5 4%
Other 13 11%
Unknown 31 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2013.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Environmental Science & Technology
#16,829
of 20,675 outputs
Outputs of similar age
#144,692
of 173,791 outputs
Outputs of similar age from Environmental Science & Technology
#106
of 110 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,675 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.8. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 173,791 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 110 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.