↓ Skip to main content

Reactive deposition of nano-films in deep polymeric microcavities

Overview of attention for article published in Lab on a Chip - Miniaturisation for Chemistry & Biology, January 2012
Altmetric Badge

Mentioned by

video
1 YouTube creator

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reactive deposition of nano-films in deep polymeric microcavities
Published in
Lab on a Chip - Miniaturisation for Chemistry & Biology, January 2012
DOI 10.1039/c2lc40296c
Pubmed ID
Authors

Asif Riaz, Ram P. Gandhiraman, Ivan K. Dimov, Lourdes Basabe-Desmonts, Jens Ducrée, Stephen Daniels, Antonio J. Ricco, Luke P. Lee

Abstract

We report the controlled diffusion of gas-phase high-reactivity chemical species into long polymeric microcavities to form glass-like, low-permeability barrier films on the interior surfaces of the microcavities. Reactive species created from fragmentation of O(2) and hexamethyldisiloxane (HMDSO) in a radio-frequency (RF) plasma environment are allowed to diffuse into the microcavities of polydimethylsiloxane (PDMS), where surface reactions lead to the formation of an effective, glass-like thin-film barrier. Reactive species including silicon radicals and elemental oxygen maintain their reactivity for sufficient times (up to 7000 s) and survive the random diffusional walk through the microcavities to form glass barriers as much as 65 mm from the cavity entrance. The barrier thickness and the growth length can be controlled by the reaction time and chamber operating pressure. Increasing the cross sectional area of the cavity inlet and/or decreasing the mean free path was found to increase the thickness of the barrier film. Optical emission spectroscopic analysis was used to characterize the reactive fragments formed from HMDSO, and energy-dispersive X-ray analysis revealed that the barrier composition is consistent with oxides of silicon (SiO(x)). Formed inside PDMS microcavities, the glass barrier blocks the penetration or absorption of small molecules such as rhodamine B (RhB) and biotin, and also resists permeation of organic solvents such as toluene, preventing the PDMS microfluidic structures from swelling and deforming. Moreover, formation of glass-like thin films in PDMS microcavities enhances the stability of electroosmotic flow (EOF) relative to uncoated PDMS devices, in which EOF instabilities are significant; this enables separation by electrophoresis with reproducibility (relative standard deviation 3%, n = 5) and baseline peak resolution (R:1.3) comparable to that obtained in conventional fused-silica capillaries.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Student > Doctoral Student 5 23%
Researcher 3 14%
Professor 2 9%
Other 1 5%
Other 4 18%
Unknown 1 5%
Readers by discipline Count As %
Engineering 9 41%
Agricultural and Biological Sciences 2 9%
Chemistry 2 9%
Materials Science 2 9%
Medicine and Dentistry 2 9%
Other 3 14%
Unknown 2 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2013.
All research outputs
#23,109,385
of 25,756,911 outputs
Outputs from Lab on a Chip - Miniaturisation for Chemistry & Biology
#5,387
of 5,997 outputs
Outputs of similar age
#230,358
of 251,834 outputs
Outputs of similar age from Lab on a Chip - Miniaturisation for Chemistry & Biology
#241
of 266 outputs
Altmetric has tracked 25,756,911 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,997 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 251,834 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 266 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.