↓ Skip to main content

ASBMB

Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae)*

Overview of attention for article published in Molecular and Cellular Proteomics, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
1 news outlet
blogs
2 blogs
twitter
7 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae)*
Published in
Molecular and Cellular Proteomics, January 2017
DOI 10.1074/mcp.m116.063321
Pubmed ID
Authors

Andrew A Walker, Bruno Madio, Jiayi Jin, Eivind A B Undheim, Bryan G Fry, Glenn F King

Abstract

Assassin bugs (Hemiptera: Heteroptera: Reduviidae) are venomous insects, most of which prey on invertebrates. Assassin bug venom has features in common with venoms from other animals, such as paralysing and lethal activity when injected, and a molecular composition that includes disulfide-rich peptide neurotoxins. Uniquely, this venom also has strong liquefying activity that has been hypothesised to facilitate feeding through the narrow channel of the proboscis - a structure inherited from sap- and phloem-feeding phytophagous hemipterans and adapted during the evolution of Heteroptera into a fang and feeding structure. However, further understanding of the function of assassin bug venom is impeded by the lack of proteomic studies detailing its molecular composition. By using a combined transcriptomic/proteomic approach we show that the venom proteome of the harpactorine assassin bug Pristhesancus plagipennis includes a complex suite of >100 proteins comprising disulfide-rich peptides, CUB-domain proteins, cystatins, putative cytolytic toxins, triabin-like protein, odorant binding protein, serine proteases, catabolic enzymes, putative nutrient-binding proteins, plus eight families of proteins without homology to characterised proteins. Serine proteases, CUB domain proteins, putative cytolytic toxins, and other novel proteins in the 10-16 kDa mass range, were the most abundant venom components. Thus, in addition to putative neurotoxins, assassin bug venom includes a high proportion of enzymatic and cytolytic venom components likely to be well suited to tissue liquefaction. Our results also provide insight into the trophic switch to blood-feeding by the kissing bugs (Reduviidae: Triatominae). While some protein families such as triabins occur in the venoms of both predaceous and blood-feeding reduviids, the composition of venoms produced by these two groups is revealed to differ markedly. These results provide insights into the venom evolution in the insect suborder Heteroptera.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 19%
Student > Master 6 13%
Student > Bachelor 6 13%
Other 3 6%
Researcher 3 6%
Other 7 15%
Unknown 14 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 33%
Biochemistry, Genetics and Molecular Biology 9 19%
Environmental Science 2 4%
Chemistry 2 4%
Veterinary Science and Veterinary Medicine 1 2%
Other 3 6%
Unknown 15 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 26. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2019.
All research outputs
#1,460,243
of 25,382,440 outputs
Outputs from Molecular and Cellular Proteomics
#143
of 3,221 outputs
Outputs of similar age
#30,409
of 422,653 outputs
Outputs of similar age from Molecular and Cellular Proteomics
#2
of 53 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,221 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,653 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.