↓ Skip to main content

Intracerebral Administration of S-Adenosylhomocysteine or S-Adenosylmethionine Attenuates the Increases in the Cortical Extracellular Levels of Dimethylarginines Without Affecting cGMP Level in Rats…

Overview of attention for article published in Neurotoxicity Research, September 2016
Altmetric Badge

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
12 Mendeley
Title
Intracerebral Administration of S-Adenosylhomocysteine or S-Adenosylmethionine Attenuates the Increases in the Cortical Extracellular Levels of Dimethylarginines Without Affecting cGMP Level in Rats with Acute Liver Failure
Published in
Neurotoxicity Research, September 2016
DOI 10.1007/s12640-016-9668-7
Pubmed ID
Authors

Anna Czarnecka, Krzysztof Milewski, Radosław Jaźwiec, Magdalena Zielińska

Abstract

Alterations in brain nitric oxide (NO)/cGMP synthesis contribute to the pathogenesis of hepatic encephalopathy (HE). An increased asymmetrically dimethylated derivative of L-arginine (ADMA), an endogenous inhibitor of NO synthases, was observed in plasma of HE patients and animal models. It is not clear whether changes in brain ADMA reflect its increased local synthesis therefore affecting NO/cGMP pathway, or are a consequence of its increased peripheral blood content. We measured extracellular concentration of ADMA and symmetrically dimethylated isoform (SDMA) in the prefrontal cortex of control and thioacetamide (TAA)-induced HE rats. A contribution of locally synthesized dimethylarginines (DMAs) in their extracellular level in the brain was studied after direct infusion of the inhibitor of DMAs synthesizing enzymes (PRMTs), S-adenosylhomocysteine (AdoHcy, 2 mM), or the methyl donor, S-adenosylmethionine (AdoMet, 2 mM), via a microdialysis probe. Next, we analyzed whether locally synthesized ADMA attains physiological significance by determination of extracellular cGMP. The expression of PRMT-1 was also examined. Concentration of ADMA and SDMA, detected by positive mode electrospray LC-DMS-MS/MS, was greatly enhanced in TAA rats and was decreased (by 30 %) after AdoHcy and AdoMet infusion. TAA-induced increase (by 40 %) in cGMP was unaffected after AdoHcy administration. The expression of PRMT-1 in TAA rat brain was unaltered. The results suggest that (i) the TAA-induced increase in extracellular DMAs may result from their effective synthesis in the brain, and (ii) the excess of extracellular ADMA does not translate into changes in the extracellular cGMP concentration and implicate a minor role in brain NO/cGMP pathway control.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 17%
Student > Bachelor 2 17%
Student > Ph. D. Student 2 17%
Student > Postgraduate 2 17%
Student > Master 1 8%
Other 2 17%
Unknown 1 8%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 1 8%
Biochemistry, Genetics and Molecular Biology 1 8%
Nursing and Health Professions 1 8%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Other 2 17%
Unknown 5 42%