↓ Skip to main content

Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs

Overview of attention for article published in Parasitology Research, August 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
40 Mendeley
Title
Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs
Published in
Parasitology Research, August 2012
DOI 10.1007/s00436-012-3067-7
Pubmed ID
Authors

Manuel de Rojas, Cristina Riazzo, Rocío Callejón, Diego Guevara, Cristina Cutillas

Abstract

Canine demodicosis is a severe and highly prevalent dermatologic disease in dogs. Pet dogs can be affected by three recognized Demodex species that can produce clinical effects. In this paper, three morphological types of Demodex mites have been isolated from Spanish dogs. A complete morphobiometrical study of each one has been carried out. Morphological and biometrical studies revealed three closely related populations with some distinctive characteristics and could be identified as Demodex canis, Demodex injai, and Demodex sp. "cornei." Furthermore, one population of D. canis from China, different populations of Demodex folliculorum from human skin (Spain and China), D. folliculorum from human eyelashes (Spain), and Demodex brevis from human skin (China) were considered to find out the level of variation between different species and geographical origin. The aim of the present study is to assess the usefulness of mitochondrial DNA molecular markers in establishing phylogenetic relationships and resolve taxonomic questions in Demodex mites. Molecular studies based on the amplification and sequencing of the 16S rDNA and cytochrome oxidase I mitochondrial genes did not show clear differences between the three morphotypes considered. Furthermore, phylogenetic relationships in Demodex mites were analyzed. The resulting phylogenetic trees show that Demodex species from dogs were gathered together, and populations of D. folliculorum from humans appear together in a different branch; however, D. brevis from humans seemed to be more distant. Our results show that cytochrome oxidase I region is a useful tool to solve different taxonomic questions at the species and population level and to infer phylogenetic relationships in Demodex species. However, 16S mitochondrial rDNA seems a good marker for comparisons at an interspecies level, but not at a population level in this group of mites. Furthermore, from genetic distance and divergence data, we would suggest that D. canis, D. injai, and Demodex sp. cornei are polymorphisms of the same species.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Australia 1 3%
Unknown 38 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 23%
Student > Bachelor 7 18%
Other 4 10%
Student > Postgraduate 3 8%
Student > Master 3 8%
Other 5 13%
Unknown 9 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 30%
Veterinary Science and Veterinary Medicine 11 28%
Medicine and Dentistry 5 13%
Biochemistry, Genetics and Molecular Biology 2 5%
Unknown 10 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 July 2013.
All research outputs
#17,690,900
of 22,713,403 outputs
Outputs from Parasitology Research
#2,077
of 3,775 outputs
Outputs of similar age
#110,748
of 149,532 outputs
Outputs of similar age from Parasitology Research
#13
of 22 outputs
Altmetric has tracked 22,713,403 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,775 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 149,532 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.