↓ Skip to main content

GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes

Overview of attention for article published in BMC Genomics, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
26 Mendeley
citeulike
2 CiteULike
Title
GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes
Published in
BMC Genomics, January 2017
DOI 10.1186/s12864-016-3267-0
Pubmed ID
Authors

Lina Yuan, Yang Yu, Yanmin Zhu, Yulai Li, Changqing Li, Rujiao Li, Qin Ma, Gilman Kit-Hang Siu, Jun Yu, Taijiao Jiang, Jingfa Xiao, Yu Kang

Abstract

Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Master 5 19%
Student > Doctoral Student 3 12%
Student > Ph. D. Student 2 8%
Unspecified 1 4%
Other 3 12%
Unknown 6 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 23%
Agricultural and Biological Sciences 6 23%
Medicine and Dentistry 3 12%
Mathematics 1 4%
Unspecified 1 4%
Other 2 8%
Unknown 7 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 February 2017.
All research outputs
#15,442,314
of 22,952,268 outputs
Outputs from BMC Genomics
#6,716
of 10,686 outputs
Outputs of similar age
#256,012
of 419,029 outputs
Outputs of similar age from BMC Genomics
#127
of 210 outputs
Altmetric has tracked 22,952,268 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,029 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.