↓ Skip to main content

A simple model for the establishment of tick-borne pathogens of Ixodes scapularis: A global sensitivity analysis of R0

Overview of attention for article published in Journal of Theoretical Biology, July 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A simple model for the establishment of tick-borne pathogens of Ixodes scapularis: A global sensitivity analysis of R0
Published in
Journal of Theoretical Biology, July 2013
DOI 10.1016/j.jtbi.2013.06.035
Pubmed ID
Authors

J.M. Dunn, S. Davis, A. Stacey, M.A. Diuk-Wasser

Abstract

The basic reproduction number of a pathogen, R0, determines whether a pathogen will spread (R0>1), when introduced into a fully susceptible population or fade out (R0<1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 3%
Colombia 1 1%
Unknown 83 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 26%
Researcher 11 13%
Student > Master 11 13%
Professor 6 7%
Student > Doctoral Student 5 6%
Other 16 18%
Unknown 15 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 36%
Veterinary Science and Veterinary Medicine 7 8%
Environmental Science 7 8%
Medicine and Dentistry 6 7%
Biochemistry, Genetics and Molecular Biology 5 6%
Other 16 18%
Unknown 15 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2013.
All research outputs
#14,914,476
of 25,373,627 outputs
Outputs from Journal of Theoretical Biology
#2,146
of 4,010 outputs
Outputs of similar age
#110,748
of 206,558 outputs
Outputs of similar age from Journal of Theoretical Biology
#16
of 37 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,010 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 206,558 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.