↓ Skip to main content

Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

Overview of attention for article published in Theoretical and Applied Genetics, May 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
1 news outlet
twitter
3 X users
patent
1 patent

Citations

dimensions_citation
71 Dimensions

Readers on

mendeley
35 Mendeley
Title
Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B
Published in
Theoretical and Applied Genetics, May 2013
DOI 10.1007/s00122-013-2127-4
Pubmed ID
Authors

Feng Lin, Meixia Zhao, Jieqing Ping, Austin Johnson, Biao Zhang, T. Scott Abney, Teresa J. Hughes, Jianxin Ma

Abstract

Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, as populations of P. sojae are highly diverse and quick to adapt, and can be overcome 8-15 years after deployment. Thus, it is important to identify novel Rps genes for development of resistant soybean cultivars. PI 567139B is a soybean landrace carrying excellent resistance to nearly all predominant P. sojae races in Indiana. A mapping population consisting of 245 F2 individuals and 403 F2:3 families was developed from a cross between PI 567139B and the susceptible cultivar 'Williams', and used to dissect the resistance carried by PI 567139B. We found that the resistance in PI 567139B was conferred by two independent Rps genes, designated RpsUN1 and RpsUN2. The former was mapped to a 6.5 cM region between SSR markers Satt159 and BARCSOYSSR_03_0250 that spans the Rps1 locus on chromosome 3, while the latter was mapped to a 3.0 cM region between BARCSOYSSR_16_1275 and Sat_144, approximately 3.0-3.4 cM upstream of Rps2 on chromosome 16. According to the 'Williams 82' reference genome sequence, both regions are highly enriched with NBS-LRR genes. Marker assisted resistance spectrum analyses of these genes with 16 isolates of P. sojae, in combination with the mapping results, suggested that RpsUN1 was likely to be a novel allele at the Rps1 locus, while RpsUN2 was more likely to be a novel Rps gene.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Researcher 6 17%
Student > Master 5 14%
Student > Postgraduate 4 11%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 8 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 43%
Biochemistry, Genetics and Molecular Biology 4 11%
Environmental Science 2 6%
Social Sciences 2 6%
Business, Management and Accounting 1 3%
Other 2 6%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2016.
All research outputs
#2,377,734
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#183
of 3,565 outputs
Outputs of similar age
#20,485
of 197,168 outputs
Outputs of similar age from Theoretical and Applied Genetics
#1
of 12 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 197,168 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.