↓ Skip to main content

A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair

Overview of attention for article published in Journal of Biological Chemistry, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
3 patents

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair
Published in
Journal of Biological Chemistry, February 2017
DOI 10.1074/jbc.m117.777722
Pubmed ID
Authors

Yahong Wen, Grace Liao, Thomas Pritchard, Ting-Ting Zhao, Jon P Connelly, Shondra M Pruett-Miller, Valerie Blanc, Nicholas O Davidson, Blair B Madison

Abstract

The discovery and application of CRISPR/Cas9 technology for genome editing has greatly accelerated targeted mutagenesis in a variety of organisms. CRISPR/Cas9-mediated site-specific cleavage is typically exploited for the generation of insertions or deletions (indels) following aberrant dsDNA repair via the endogenous non-homology end-joining (NHEJ) pathway, or alternatively, for enhancing homology directed repair (HDR) to facilitate the generation of a specific mutation (or knock-in). However, there is a need for efficient cellular assays that can measure Cas9/guide RNA (gRNA) activity. Reliable methods for enriching and identifying desired mutants are also lacking. Here we describe a method using the Piggybac transposon for stable genomic integration of an H2B-GFP reporter or a hygromycin resistance gene for assaying Cas9 target cleavage and homology-directed repair (HDR). The H2B-GFP fusion protein provides increased stability and an obvious pattern of nuclear localization. This method, called SRIRACCHA (i.e., a stable, but reversible, integrated reporter for assaying CRISPR/Cas-stimulated HDR activity), enables the enrichment of mutants via selection of GFP-positive or hygromycin-resistant mammalian cells (immortalized or non-immortalized) as a surrogate for the modification of the endogenous target site. Currently available hyperactive Piggybac transposase mutants allow both delivery and removal of the surrogate reporters, with minimal risk of generating undesirable mutations. This assay permits rapid screening for efficient gRNAs, and the accelerated identification of mutant clones, and is applicable to many cell types. We foresee the utility of this approach in contexts in which the maintenance of genomic integrity is essential, for example, when engineering cells for therapeutic purposes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 86 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 24%
Student > Ph. D. Student 18 21%
Student > Bachelor 9 10%
Student > Master 9 10%
Professor 4 5%
Other 9 10%
Unknown 17 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 27 31%
Agricultural and Biological Sciences 23 26%
Neuroscience 5 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Chemical Engineering 2 2%
Other 11 13%
Unknown 17 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2020.
All research outputs
#2,954,745
of 25,382,440 outputs
Outputs from Journal of Biological Chemistry
#4,405
of 85,247 outputs
Outputs of similar age
#52,590
of 324,325 outputs
Outputs of similar age from Journal of Biological Chemistry
#49
of 391 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 85,247 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,325 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 391 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.