↓ Skip to main content

Obstructive sleep apnea screening by integrating snore feature classes

Overview of attention for article published in Physiological Measurement, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

policy
1 policy source
twitter
1 X user
patent
2 patents

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Obstructive sleep apnea screening by integrating snore feature classes
Published in
Physiological Measurement, January 2013
DOI 10.1088/0967-3334/34/2/99
Pubmed ID
Authors

U R Abeyratne, S de Silva, C Hukins, B Duce

Abstract

Obstructive sleep apnea (OSA) is a serious sleep disorder with high community prevalence. More than 80% of OSA suffers remain undiagnosed. Polysomnography (PSG) is the current reference standard used for OSA diagnosis. It is expensive, inconvenient and demands the extensive involvement of a sleep technologist. At present, a low cost, unattended, convenient OSA screening technique is an urgent requirement. Snoring is always almost associated with OSA and is one of the earliest nocturnal symptoms. With the onset of sleep, the upper airway undergoes both functional and structural changes, leading to spatially and temporally distributed sites conducive to snore sound (SS) generation. The goal of this paper is to investigate the possibility of developing a snore based multi-feature class OSA screening tool by integrating snore features that capture functional, structural, and spatio-temporal dependences of SS. In this paper, we focused our attention to the features in voiced parts of a snore, where quasi-repetitive packets of energy are visible. Individual snore feature classes were then optimized using logistic regression for optimum OSA diagnostic performance. Consequently, all feature classes were integrated and optimized to obtain optimum OSA classification sensitivity and specificity. We also augmented snore features with neck circumference, which is a one-time measurement readily available at no extra cost. The performance of the proposed method was evaluated using snore recordings from 86 subjects (51 males and 35 females). Data from each subject consisted of 6-8 h long sound recordings, made concurrently with routine PSG in a clinical sleep laboratory. Clinical diagnosis supported by standard PSG was used as the reference diagnosis to compare our results against. Our proposed techniques resulted in a sensitivity of 93±9% with specificity 93±9% for females and sensitivity of 92±6% with specificity 93±7% for males at an AHI decision threshold of 15 events/h. These results indicate that our method holds the potential as a tool for population screening of OSA in an unattended environment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
France 1 1%
Switzerland 1 1%
Unknown 67 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 23%
Student > Ph. D. Student 10 14%
Student > Bachelor 8 11%
Student > Master 6 8%
Other 4 6%
Other 9 13%
Unknown 18 25%
Readers by discipline Count As %
Engineering 17 24%
Medicine and Dentistry 12 17%
Computer Science 6 8%
Neuroscience 4 6%
Agricultural and Biological Sciences 3 4%
Other 12 17%
Unknown 17 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2023.
All research outputs
#4,496,409
of 22,715,151 outputs
Outputs from Physiological Measurement
#164
of 1,379 outputs
Outputs of similar age
#49,211
of 280,559 outputs
Outputs of similar age from Physiological Measurement
#2
of 6 outputs
Altmetric has tracked 22,715,151 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,379 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,559 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.