↓ Skip to main content

The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities

Overview of attention for article published in Aquatic Toxicology, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (60th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities
Published in
Aquatic Toxicology, February 2017
DOI 10.1016/j.aquatox.2017.02.027
Pubmed ID
Authors

Andrew D. Goff, Parichehr Saranjampour, Lauren M. Ryan, Michelle L. Hladik, Joseph A. Covi, Kevin L. Armbrust, Susanne M. Brander

Abstract

Endocrine disrupting compounds (EDCs) are now widely established to be present in the environment at concentrations capable of affecting wild organisms. Although many studies have been conducted in fish, less is known about effects in invertebrates such as decapod crustaceans. Decapods are exposed to low concentrations of EDCs that may cause infertility, decreased growth, and developmental abnormalities. The objective herein was to evaluate effects of fipronil and its photodegradation product fipronil desulfinyl. Fipronil desulfinyl was detected in the eggs of the decapod Callinectes sapidus sampled off the coast of South Carolina. As such, to examine specific effects on C. sapidus exposed in early life, we exposed laboratory-reared juveniles to fipronil and fipronil desulfinyl for 96h at three nominal concentrations (0.01, 0.1, 0.5μg/l) and two different salinities (10, 30ppt). The size of individual crabs (weight, carapace width) and the expression of several genes critical to growth and reproduction were evaluated. Exposure to fipronil and fipronil desulfinyl resulted in significant size increases in all treatments compared to controls. Levels of expression for vitellogenin (Vtg), an egg yolk precursor, and the ecdysone receptor (EcR), which binds to ecdysteroids that control molting, were inversely correlated with increasing fipronil and fipronil desulfinyl concentrations. Effects on overall growth and on the expression of EcR and Vtg differ depending on the exposure salinity. The solubility of fipronil is demonstrated to decrease considerably at higher salinities. This suggests that fipronil and its photodegradation products may be more bioavailable to benthic organisms as salinity increases, as more chemical would partition to tissues. Our findings suggest that endocrine disruption is occurring through alterations to gene expression in C. sapidus populations exposed to environmental levels of fipronil, and that effects may be dependent upon the salinity at which exposure occurs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 16%
Student > Master 9 14%
Student > Bachelor 7 11%
Researcher 5 8%
Student > Doctoral Student 4 6%
Other 8 13%
Unknown 21 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 16%
Environmental Science 9 14%
Chemistry 5 8%
Biochemistry, Genetics and Molecular Biology 3 5%
Engineering 3 5%
Other 8 13%
Unknown 26 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2017.
All research outputs
#8,476,767
of 25,382,440 outputs
Outputs from Aquatic Toxicology
#617
of 2,666 outputs
Outputs of similar age
#127,686
of 324,194 outputs
Outputs of similar age from Aquatic Toxicology
#11
of 49 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 2,666 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,194 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.