↓ Skip to main content

An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators…

Overview of attention for article published in Immunobiology, July 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation
Published in
Immunobiology, July 2013
DOI 10.1016/j.imbio.2013.07.001
Pubmed ID
Authors

Daniel M. Hohenhaus, Kolja Schaale, Kim-Anh Le Cao, Vernon Seow, Abishek Iyer, David P. Fairlie, Matthew J. Sweet

Abstract

G protein-coupled receptors (GPCRs) are among the most important targets in drug discovery. In this study, we used TaqMan Low Density Arrays to profile the full GPCR repertoire of primary human macrophages differentiated from monocytes using either colony stimulating factor-1 (CSF-1/M-CSF) (CSF-1 Mϕ) or granulocyte macrophage colony stimulating factor (GM-CSF) (GM-CSF Mϕ). The overall trend was a downregulation of GPCRs during monocyte to macrophage differentiation, but a core set of 10 genes (e.g. LGR4, MRGPRF and GPR143) encoding seven transmembrane proteins were upregulated, irrespective of the differentiating agent used. Several of these upregulated GPCRs have not previously been studied in the context of macrophage biology and/or inflammation. As expected, CSF-1 Mϕ and GM-CSF Mϕ exhibited differential inflammatory cytokine profiles in response to the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS). Moreover, 15 GPCRs were differentially expressed between these cell populations in the basal state. For example, EDG1 was expressed at elevated levels in CSF-1 Mϕ versus GM-CSF Mϕ, whereas the reverse was true for EDG6. 101 GPCRs showed differential regulation over an LPS time course, with 65 of these profiles being impacted by the basal differentiation state (e.g. GPRC5A, GPRC5B). Only 14 LPS-regulated GPCRs showed asynchronous behavior (divergent LPS regulation) with respect to differentiation status. Thus, the differentiation state primarily affects the magnitude of LPS-regulated expression, rather than causing major reprogramming of GPCR gene expression profiles. Several GPCRs showing differential profiles between CSF-1 Mϕ and GM-CSF Mϕ (e.g. P2RY8, GPR92, EMR3) have not been widely investigated in macrophage biology and inflammation. Strikingly, several closely related GPCRs displayed completely opposing patterns of regulation during differentiation and/or activation (e.g. EDG1 versus EDG6, LGR4 versus LGR7, GPRC5A versus GPRC5B). We propose that selective regulation of GPCR5A and GPCR5B in CSF-1 Mϕ contributes to skewing toward the M2 macrophage phenotype. Our analysis of the GPCR repertoire expressed during primary human monocyte to macrophage differentiation and TLR4-mediated activation provides a valuable new platform for conducting future functional analyses of individual GPCRs in human macrophage inflammatory pathways.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 62 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 21%
Researcher 10 16%
Student > Master 8 13%
Student > Doctoral Student 5 8%
Student > Bachelor 3 5%
Other 10 16%
Unknown 14 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 30%
Medicine and Dentistry 8 13%
Biochemistry, Genetics and Molecular Biology 5 8%
Immunology and Microbiology 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 8 13%
Unknown 16 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2013.
All research outputs
#20,656,820
of 25,374,917 outputs
Outputs from Immunobiology
#1,033
of 1,375 outputs
Outputs of similar age
#157,287
of 206,796 outputs
Outputs of similar age from Immunobiology
#7
of 17 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,375 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 206,796 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.