↓ Skip to main content

Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice

Overview of attention for article published in The Journal of Pathology, September 2013
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
1 X user
patent
3 patents
googleplus
1 Google+ user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice
Published in
The Journal of Pathology, September 2013
DOI 10.1002/path.4231
Pubmed ID
Authors

Tony Huynh, Kitipong Uaesoontrachoon, James L Quinn, Kathleen S Tatem, Christopher R Heier, Jack H Van Der Meulen, Qing Yu, Mark Harris, Christopher J Nolan, Guy Haegeman, Miranda D Grounds, Kanneboyina Nagaraju

Abstract

The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective glucocorticoid receptor modulation by compound A represents a potential therapeutic strategy to improve dystrophic pathology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Researcher 11 17%
Other 8 13%
Student > Bachelor 6 9%
Student > Postgraduate 5 8%
Other 12 19%
Unknown 8 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 25%
Medicine and Dentistry 14 22%
Biochemistry, Genetics and Molecular Biology 10 16%
Neuroscience 4 6%
Chemistry 3 5%
Other 8 13%
Unknown 9 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2020.
All research outputs
#7,047,954
of 25,374,917 outputs
Outputs from The Journal of Pathology
#1,008
of 3,381 outputs
Outputs of similar age
#57,335
of 210,788 outputs
Outputs of similar age from The Journal of Pathology
#9
of 33 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 3,381 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 210,788 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.