↓ Skip to main content

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia

Overview of attention for article published in Journal of Clinical Investigation, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users
patent
1 patent

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia
Published in
Journal of Clinical Investigation, March 2017
DOI 10.1172/jci90193
Pubmed ID
Authors

Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee

Abstract

Shohat-type spondyloepimetaphyseal dysplasia (SEMD) is a skeletal dysplasia that affects cartilage development. Similar skeletal disorders, such as spondyloepiphyseal dysplasias, are linked to mutations in type II collagen (COL2A1), but the causative gene in SEMD is not known. Here, we have performed whole-exome sequencing to identify a recurrent homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK domain containing 1 (DDRGK1) in 4 families affected by SEMD. In zebrafish, ddrgk1 deficiency disrupted craniofacial cartilage development and led to decreased levels of the chondrogenic master transcription factor sox9 and its downstream target, col2a1. Overexpression of sox9 rescued the zebrafish chondrogenic and craniofacial phenotype generated by ddrgk1 knockdown, thus identifying DDRGK1 as a regulator of SOX9. Consistent with these results, Ddrgk1-/- mice displayed delayed limb bud chondrogenic condensation, decreased SOX9 protein expression and Col2a1 transcript levels, and increased apoptosis. Furthermore, we determined that DDRGK1 can directly bind to SOX9 to inhibit its ubiquitination and proteasomal degradation. Taken together, these data indicate that loss of DDRGK1 decreases SOX9 expression and causes a human skeletal dysplasia, identifying a mechanism that regulates chondrogenesis via modulation of SOX9 ubiquitination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 39 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 30%
Researcher 6 15%
Student > Doctoral Student 4 10%
Other 3 8%
Student > Bachelor 2 5%
Other 6 15%
Unknown 7 18%
Readers by discipline Count As %
Medicine and Dentistry 17 43%
Biochemistry, Genetics and Molecular Biology 12 30%
Agricultural and Biological Sciences 3 8%
Business, Management and Accounting 1 3%
Unspecified 1 3%
Other 1 3%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2021.
All research outputs
#5,497,501
of 22,958,253 outputs
Outputs from Journal of Clinical Investigation
#8,026
of 16,406 outputs
Outputs of similar age
#88,624
of 311,212 outputs
Outputs of similar age from Journal of Clinical Investigation
#77
of 124 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 16,406 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.6. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,212 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 124 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.