↓ Skip to main content

Combined Effect of Silica Nanoparticles and Benzo[a]pyrene on Cell Cycle Arrest Induction and Apoptosis in Human Umbilical Vein Endothelial Cells

Overview of attention for article published in International Journal of Environmental Research and Public Health, March 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combined Effect of Silica Nanoparticles and Benzo[a]pyrene on Cell Cycle Arrest Induction and Apoptosis in Human Umbilical Vein Endothelial Cells
Published in
International Journal of Environmental Research and Public Health, March 2017
DOI 10.3390/ijerph14030289
Pubmed ID
Authors

Collins Otieno Asweto, Jing Wu, Hejing Hu, Lin Feng, Xiaozhe Yang, Junchao Duan, Zhiwei Sun

Abstract

Particulate matter (PM) such as ultrafine particulate matter (UFP) and the organic compound pollutants such as polycyclic aromatic hydrocarbon (PAH) are widespread in the environment. UFP and PAH are present in the air, and their presence may enhance their individual adverse effects on human health. However, the mechanism and effect of their combined interactions on human cells are not well understood. We investigated the combined toxicity of silica nanoparticles (SiNPs) (UFP) and Benzo[a]pyrene (B[a]P) (PAH) on human endothelial cells. Human umbilical vascular endothelial cells (HUVECs) were exposed to SiNPs or B[a]P, or a combination of SiNPs and B[a]P. The toxicity was investigated by assessing cellular oxidative stress, DNA damage, cell cycle arrest, and apoptosis. Our results show that SiNPs were able to induce reactive oxygen species generation (ROS). B[a]P, when acting alone, had no toxicity effect. However, a co-exposure of SiNPs and B[a]P synergistically induced DNA damage, oxidative stress, cell cycle arrest at the G2/M check point, and apoptosis. The co-exposure induced G2/M arrest through the upregulation of Chk1 and downregulation of Cdc25C, cyclin B1. The co-exposure also upregulated bax, caspase-3, and caspase-9, the proapoptic proteins, while down-regulating bcl-2, which is an antiapoptotic protein. These results show that interactions between SiNPs and B[a]P synergistically potentiated toxicological effects on HUVECs. This information should help further our understanding of the combined toxicity of PAH and UFP.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 33%
Student > Master 5 14%
Student > Ph. D. Student 5 14%
Student > Bachelor 3 8%
Lecturer 2 6%
Other 3 8%
Unknown 6 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 17%
Environmental Science 3 8%
Biochemistry, Genetics and Molecular Biology 3 8%
Chemical Engineering 2 6%
Chemistry 2 6%
Other 5 14%
Unknown 15 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2017.
All research outputs
#6,609,737
of 25,770,491 outputs
Outputs from International Journal of Environmental Research and Public Health
#9,842
of 32,140 outputs
Outputs of similar age
#97,505
of 322,096 outputs
Outputs of similar age from International Journal of Environmental Research and Public Health
#91
of 324 outputs
Altmetric has tracked 25,770,491 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 32,140 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.1. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,096 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 324 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.