↓ Skip to main content

Occupational exposure to particles and mitochondrial DNA - relevance for blood pressure

Overview of attention for article published in Environmental Health, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
55 Mendeley
Title
Occupational exposure to particles and mitochondrial DNA - relevance for blood pressure
Published in
Environmental Health, March 2017
DOI 10.1186/s12940-017-0234-4
Pubmed ID
Authors

Yiyi Xu, Huiqi Li, Maria Hedmer, Mohammad Bakhtiar Hossain, Håkan Tinnerberg, Karin Broberg, Maria Albin

Abstract

Particle exposure is a risk factor for cardiovascular diseases. Mitochondrial DNA (mtDNA) is a primary target for oxidative stress generated by particle exposure. We aimed to elucidate the effects of occupational exposure to particle-containing welding fumes on different biomarkers of mtDNA function, and in turn, explore if they modify the association between particle exposure and cardiovascular response, measured as blood pressure. We investigated 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal sampling of the welders' exposure to respirable dust was performed during work hours (average sampling time: 6.8 h; range: 2.4-8.6 h) and blood pressure was measured once for each subject. We measured relative mtDNA copy number by quantitative PCR and methylation of the mitochondrial regulatory region D-loop and the tRNA encoding gene MT-TF by bisulfite-pyrosequencing. We calculated the relative number of unmethylated D-loop and MT-TF as markers of mtDNA function to explore the modification of mtDNA on the association between particle exposure and blood pressure. General linear models were used for statistical analyses. Welders had higher mtDNA copy number (β = 0.11, p = 0.003) and lower DNA methylation of D-loop (β = -1.4, p = 0.002) and MT-TF (β = -1.5, p = 0.004) than controls. Higher mtDNA copy number was weakly associated with higher personal respirable dust exposure among welders with exposure level above 0.7 mg/m(3) (β = 0.037, p = 0.054). MtDNA function modified the effect of welding fumes on blood pressure: welders with low mtDNA function had higher blood pressure than controls, while no such difference was found in the group with high mtDNA function. Increased mtDNA copy number and decreased D-loop and MT-TF methylation were associated with particle-containing welding fumes exposure, indicating exposure-related oxidative stress. The modification of mtDNA function on exposure-associated increase in blood pressure may represent a mitochondria-environment interaction.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Ph. D. Student 8 15%
Other 5 9%
Student > Bachelor 2 4%
Student > Doctoral Student 2 4%
Other 8 15%
Unknown 20 36%
Readers by discipline Count As %
Medicine and Dentistry 8 15%
Biochemistry, Genetics and Molecular Biology 6 11%
Environmental Science 4 7%
Nursing and Health Professions 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 8 15%
Unknown 22 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2017.
All research outputs
#20,408,464
of 22,958,253 outputs
Outputs from Environmental Health
#1,348
of 1,498 outputs
Outputs of similar age
#268,244
of 307,900 outputs
Outputs of similar age from Environmental Health
#32
of 37 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,498 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 31.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 307,900 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.