↓ Skip to main content

Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles

Overview of attention for article published in ACS Photonics, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
5 X users
patent
2 patents

Citations

dimensions_citation
102 Dimensions

Readers on

mendeley
176 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles
Published in
ACS Photonics, March 2017
DOI 10.1021/acsphotonics.6b01048
Pubmed ID
Authors

Marco Valenti, Anirudh Venugopal, Daniel Tordera, Magnus P. Jonsson, George Biskos, Andreas Schmidt-Ott, Wilson A. Smith

Abstract

The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 176 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 <1%
Unknown 175 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 54 31%
Researcher 23 13%
Student > Master 17 10%
Student > Doctoral Student 9 5%
Professor > Associate Professor 9 5%
Other 21 12%
Unknown 43 24%
Readers by discipline Count As %
Physics and Astronomy 32 18%
Chemistry 30 17%
Materials Science 25 14%
Engineering 17 10%
Chemical Engineering 10 6%
Other 9 5%
Unknown 53 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2023.
All research outputs
#3,799,858
of 25,382,440 outputs
Outputs from ACS Photonics
#295
of 2,963 outputs
Outputs of similar age
#69,405
of 336,732 outputs
Outputs of similar age from ACS Photonics
#10
of 62 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,963 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,732 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.