↓ Skip to main content

Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
112 Dimensions

Readers on

mendeley
79 Mendeley
Title
Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma
Published in
Journal of Experimental & Clinical Cancer Research, March 2017
DOI 10.1186/s13046-017-0507-3
Pubmed ID
Authors

Wei Xiao, Zhiyong Gao, Yixing Duan, Wuxiong Yuan, Yang Ke

Abstract

Cancer stem cells (CSCs) are correlated with the initiation, chemoresistance and relapse of tumors. Notch pathway has been reported to function in CSCs maintenance, but whether it is involved in renal cell carcinoma (RCC) CSCs maintaining stemness remain unclear. This study aims to explore the effect of Notch pathway on stemness of CSCs in RCC and the underlying mechanisms. The CD133(+)/CD24(+) cells were isolated from RCC ACHN and Caki-1 cell line using Magnetic-activated cell sorting and identified by Flow cytometry analysis. RT-PCR and immunoblot analyses were used for determining the stemness maker expression. The effect of Notch pathway on function of CSCs was assessed by self-renewal ability, chemosensitivity, invasive and migratory ability tumorigenicity in vivo using soft agar colony formation assay, sphere-forming assay, MTT assay, Transwell assay. Here, we found that the sorted CD133(+)/CD24(+)cells possessed elevated stemness maker CTR2, BCL-2, MDR1, OCT-4, KLF4, compared with parental cells, as well as enhanced self-renewal ability, stronger resistance to cisplatin and sorafenib, increased invasion and migration, and higher tumorigenesis in vivo, suggesting the CD133(+)/CD24(+) cells have the stem-like characteristics of CSCs and thus identified as RCC CSCs. Then the enhanced notch1, notch2, Jagged1, Jagged2, DLL1 and DLL4 expression were detected in RCC CSCs and blockage of Notch1 or notch2 using pharmacological inhibitor MRK-003 or its endogenous inhibitor Numb resulted in loss of its stemness features: self-renewal, chemoresistance, invasive and migratory potential, and tumorigenesis in vivo. Moreover, it is confirmed that overexpression of notch1 up-regulated CXCR4 inRCC CSCs and augmented SDF-1-induced chemotaxis in RCC CSCs in vitro, which could be rescued when treatment of CXCR4 inhibitor, suggesting that notch signaling promotes the chemotaxis of RCC CSCs by SDF-1/CXCR4 axis. Our results provide a new mechanism of RCC CSCs maintaining stemness via notch pathway as well as a potential therapeutic target in human RCC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 19%
Student > Master 12 15%
Researcher 9 11%
Student > Bachelor 7 9%
Professor > Associate Professor 3 4%
Other 5 6%
Unknown 28 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 27%
Medicine and Dentistry 8 10%
Agricultural and Biological Sciences 6 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Social Sciences 3 4%
Other 6 8%
Unknown 31 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2019.
All research outputs
#4,314,251
of 25,382,440 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#223
of 2,380 outputs
Outputs of similar age
#71,870
of 321,120 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#3
of 21 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,380 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,120 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.