↓ Skip to main content

Lipid metabolism and potentials of biofuel and high added-value oil production in red algae

Overview of attention for article published in World Journal of Microbiology and Biotechnology, March 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
64 Mendeley
Title
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae
Published in
World Journal of Microbiology and Biotechnology, March 2017
DOI 10.1007/s11274-017-2236-3
Pubmed ID
Authors

Naoki Sato, Takashi Moriyama, Natsumi Mori, Masakazu Toyoshima

Abstract

Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 16%
Student > Ph. D. Student 9 14%
Student > Bachelor 9 14%
Researcher 6 9%
Professor > Associate Professor 5 8%
Other 10 16%
Unknown 15 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 33%
Biochemistry, Genetics and Molecular Biology 6 9%
Chemistry 5 8%
Environmental Science 4 6%
Chemical Engineering 2 3%
Other 8 13%
Unknown 18 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2018.
All research outputs
#16,223,992
of 23,911,072 outputs
Outputs from World Journal of Microbiology and Biotechnology
#990
of 1,757 outputs
Outputs of similar age
#198,436
of 311,275 outputs
Outputs of similar age from World Journal of Microbiology and Biotechnology
#13
of 37 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,757 research outputs from this source. They receive a mean Attention Score of 2.9. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,275 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.