↓ Skip to main content

Role of FGFRL1 and other FGF signaling proteins in early kidney development

Overview of attention for article published in Cellular and Molecular Life Sciences, October 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
39 Mendeley
Title
Role of FGFRL1 and other FGF signaling proteins in early kidney development
Published in
Cellular and Molecular Life Sciences, October 2012
DOI 10.1007/s00018-012-1189-9
Pubmed ID
Authors

Beat Trueb, Ruth Amann, Simon D. Gerber

Abstract

The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 33%
Student > Bachelor 6 15%
Researcher 5 13%
Student > Doctoral Student 2 5%
Other 2 5%
Other 6 15%
Unknown 5 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 36%
Agricultural and Biological Sciences 10 26%
Medicine and Dentistry 4 10%
Neuroscience 3 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2022.
All research outputs
#4,772,890
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#908
of 4,151 outputs
Outputs of similar age
#34,867
of 185,893 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#3
of 29 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 185,893 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.