↓ Skip to main content

Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester

Overview of attention for article published in Analytical & Bioanalytical Chemistry, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
12 Mendeley
Title
Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester
Published in
Analytical & Bioanalytical Chemistry, February 2017
DOI 10.1007/s00216-017-0222-0
Pubmed ID
Authors

Siriluck Pojjanapornpun, Kornkanok Aryusuk, Supathra Lilitchan, Kanit Krisnangkura

Abstract

The Gibbs energy additivity method was used to correlate the retention time (t R) of common fatty acid methyl esters (FAMEs) to their chemical structures. The t R of 20 standard FAMEs eluted from three capillary columns of different polarities (ZB-WAXplus, BPX70, and SLB-IL111) under both isothermal gas chromatography and temperature-programmed gas chromatography (TPGC) conditions were accurately predicted. Also, the predicted t R of FAMEs prepared from flowering pak choi seed oil obtained by multistep TPGC with the BPX70 column were within 1.0% of the experimental t R. The predicted t R or mathematical t R (t R(math)) values could possibly be used as references in identification of common FAMEs. Hence, FAMEs prepared from horse mussel and fish oil capsules were chromatographed on the BPX70 and ZB-WAXplus columns in single-step and multistep TPGC. Identification was done by comparison of t R with the t R of standard FAMEs and with t R(math). Both showed correct identifications. The proposed model has six numeric constants. Five of six could be directly transferred to other columns of the same stationary phase. The first numeric constant (a), which contained the column phase ratio, could also be transferred with the adjustment of the column phase ratio to the actual phase ratio of the transferred column. Additionally, the numeric constants could be transferred across laboratories, with similar correction of the first numeric constant. The TPGC t R predicted with the transferred column constants were in good agreement with the reported experimental t R of FAMEs. Moreover, hexane was used in place of the conventional t M marker in the calculation. Hence, the experimental methods were much simplified and practically feasible. The proposed method for using t R(math) as the references would provide an alternative to the uses of real FAMEs as the references. It is simple and rapid and with good accuracy compared with the use of experimental t R as references.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 42%
Student > Bachelor 1 8%
Student > Ph. D. Student 1 8%
Professor 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 2 17%
Readers by discipline Count As %
Chemistry 5 42%
Medicine and Dentistry 2 17%
Biochemistry, Genetics and Molecular Biology 1 8%
Engineering 1 8%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,543
of 9,619 outputs
Outputs of similar age
#365,573
of 424,791 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#104
of 154 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,791 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.