↓ Skip to main content

A model‐based iterative reconstruction algorithm DIRA using patient‐specific tissue classification via DECT for improved quantitative CT in dose planning

Overview of attention for article published in Medical Physics, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A model‐based iterative reconstruction algorithm DIRA using patient‐specific tissue classification via DECT for improved quantitative CT in dose planning
Published in
Medical Physics, May 2017
DOI 10.1002/mp.12238
Pubmed ID
Authors

Alexandr Malusek, Maria Magnusson, Michael Sandborg, Gudrun Alm Carlsson

Abstract

To develop and evaluate-in a proof-of-concept configuration-a novel iterative reconstruction algorithm (DIRA) for quantitative determination of elemental composition of patient tissues for application to brachytherapy with low energy (< 50 keV) photons and proton therapy. DIRA was designed as a model-based iterative reconstruction algorithm, which uses filtered backprojection, automatic segmentation and multimaterial tissue decomposition. The evaluation was done for a phantom derived from the voxelized ICRP 110 male phantom. Soft tissues were decomposed to the lipid, protein and water triplet, bones were decomposed to the compact bone and bone marrow doublet. Projections were derived using the Drasim simulation code for an axial scanning con_guration resembling a typical DECT (dual-energy CT) scanner with 80kV and Sn140kV x-ray spectra. The iterative loop produced mono-energetic images at 50 and 88 keV without beam hardening artifacts. Different noise levels were considered: no noise, a typical noise level in diagnostic imaging and reduced noise level corresponding to tenfold higher doses. An uncertainty analysis of the results was performed using type A and B evaluations. The two approaches were compared. Linear attenuation coefficients averaged over a region were obtained with relative errors less than 0.5% for all evaluated regions. Errors in average mass fractions of the three-material decomposition were less than 0.04 for no noise and reduced noise levels and less than 0.11 for the typical noise level. Mass fractions of individual pixels were strongly affected by noise, which slightly increased after the first iteration but subsequently stabilized. Estimates of uncertainties in mass fractions provided by the type B evaluation differed from the type A estimates by less than 1.5% for most cases. The algorithm was fast, the results converged after 5 iterations. The algorithmic complexity of forward polyenergetic projection calculation was much reduced by using material doublets and triplets. The simulations indicated that DIRA is capable of determining elemental composition of tissues, which are needed in brachytherapy with low energy (< 50 keV) photons and proton therapy. The algorithm provided quantitative monoenergetic images with beam hardening artifacts removed. Its convergence was fast, image sharpness expressed via the modulation transfer function was maintained, and image noise did not increase with the number of iterations. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 33%
Student > Doctoral Student 3 17%
Other 2 11%
Student > Ph. D. Student 2 11%
Lecturer 1 6%
Other 1 6%
Unknown 3 17%
Readers by discipline Count As %
Medicine and Dentistry 6 33%
Physics and Astronomy 4 22%
Computer Science 2 11%
Arts and Humanities 1 6%
Earth and Planetary Sciences 1 6%
Other 1 6%
Unknown 3 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from Medical Physics
#6,405
of 7,985 outputs
Outputs of similar age
#249,315
of 324,351 outputs
Outputs of similar age from Medical Physics
#104
of 160 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,985 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,351 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 160 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.