↓ Skip to main content

Effects of bilateral vestibular deafferentation in rat on hippocampal theta response to somatosensory stimulation, acetylcholine release, and cholinergic neurons in the pedunculopontine tegmental…

Overview of attention for article published in Brain Structure and Function, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
26 Mendeley
Title
Effects of bilateral vestibular deafferentation in rat on hippocampal theta response to somatosensory stimulation, acetylcholine release, and cholinergic neurons in the pedunculopontine tegmental nucleus
Published in
Brain Structure and Function, March 2017
DOI 10.1007/s00429-017-1407-1
Pubmed ID
Authors

Phillip Aitken, Yiwen Zheng, Paul F. Smith

Abstract

Vestibular dysfunction has been shown to cause spatial memory impairment. Neurophysiological studies indicate that bilateral vestibular loss (BVL), in particular, is associated with an impairment of the response of hippocampal place cells and theta rhythm. However, the specific neural pathways through which vestibular information reaches the hippocampus are yet to be fully elucidated. The aim of the present study was to further investigate the hypothesised 'theta-generating pathway' from the brainstem vestibular nucleus to the hippocampus. BVL, and in some cases, unilateral vestibular loss (UVL), induced by intratympanic sodium arsanilate injections in rats, were used to investigate the effects of vestibular loss on somatosensory-induced type 2 theta rhythm, acetylcholine (ACh) release in the hippocampus, and the number of cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg), an important part of the theta-generating pathway. Under urethane anaesthesia, BVL was found to cause a significant increase in the maximum power of the type 2 theta (3-6 Hz) frequency band compared to UVL and sham animals. Rats with BVL generally exhibited a lower basal level of ACh release than sham rats; however, this difference was not statistically significant. The PPTg of BVL rats exhibited significantly more choline-acetyltransferase (ChAT)-positive neurons than that of sham animals, as did the contralateral PPTg of UVL animals; however, the number of ChAT-positive neurons on the ipsilateral side of UVL animals was not significantly different from sham animals. The results of these studies indicate that parts of the theta-generating pathway undergo a significant reorganisation following vestibular loss, which suggests that this pathway is important for the interaction between the vestibular system and the hippocampus.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Master 5 19%
Student > Ph. D. Student 3 12%
Student > Bachelor 3 12%
Professor 1 4%
Other 3 12%
Unknown 6 23%
Readers by discipline Count As %
Neuroscience 9 35%
Medicine and Dentistry 4 15%
Biochemistry, Genetics and Molecular Biology 2 8%
Agricultural and Biological Sciences 1 4%
Psychology 1 4%
Other 3 12%
Unknown 6 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#16,454,538
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,015
of 1,725 outputs
Outputs of similar age
#198,834
of 312,478 outputs
Outputs of similar age from Brain Structure and Function
#23
of 52 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,478 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.