↓ Skip to main content

Characterization of calcineurin from Cryptococcus humicola and the application of calcineurin in aluminum tolerance

Overview of attention for article published in BMC Biotechnology, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of calcineurin from Cryptococcus humicola and the application of calcineurin in aluminum tolerance
Published in
BMC Biotechnology, March 2017
DOI 10.1186/s12896-017-0350-9
Pubmed ID
Authors

Lei Zhang, Jing-jing Zhang, Shuai Liu, Hong-juan Nian, Li-mei Chen

Abstract

Calcineurin (CaN) is a Ca(2+)- and calmodulin (CaM)-dependent serine/threonine phosphatase. Previous studies have found that CaN is involved in the regulation of the stress responses. In this study, the growth of Cryptococcus humicola was inhibited by the CaN inhibitor tacrolimus (FK506) under aluminum (Al) stress. The expression of CNA encoding a catalytic subunit A (CNA) and its interaction with CaM were upregulated when the concentration of Al was increased. A CaM-binding domain and key amino acids responsible for interaction with CaM were identified. ∆CNAb with a deletion from S454 to A639 was detected to bind to CaM, while ∆CNAa with a deletion from R436 to A639 showed no binding to CaM. The binding affinities of CNA1 and CNA2, in which I439 or I443 were replaced by Ala, were decreased relative to wild-type CNA. The phosphatase activities of ∆CNAa, CNA1 and CNA2 were lower than the wild-type protein. These results suggest that the region between R436 and S454 is essential for the interaction with CaM and I439, I443 are key amino acids in this region. The ability of the CNA transgenic yeast to develop resistance to Al was significantly higher than that of control yeast. Residual Al in the CNA transgenic yeast culture media was significantly lower than the amount of Al originally added to the media or the residual Al remaining in the control yeast culture media. These findings suggest that CNA confers Al tolerance, and the mechanism of Al tolerance may involve absorption of active Al. Al stress up-regulated the expression of CNA. CaM-binding domain and key amino acids responsible for interaction with CaM were identified and both are required for phosphatase activities. CNA conferred yeast Al resistance indicating that the gene has a potential to improve Al-tolerance through gene engineering.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 43%
Professor 1 14%
Student > Bachelor 1 14%
Unknown 2 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 43%
Medicine and Dentistry 2 29%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2017.
All research outputs
#20,412,387
of 22,962,258 outputs
Outputs from BMC Biotechnology
#849
of 938 outputs
Outputs of similar age
#269,165
of 308,778 outputs
Outputs of similar age from BMC Biotechnology
#15
of 19 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 938 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,778 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.