↓ Skip to main content

Induction of anthocyanin in the inner epidermis of red onion leaves by environmental stimuli and transient expression of transcription factors

Overview of attention for article published in Plant Cell Reports, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
16 Mendeley
Title
Induction of anthocyanin in the inner epidermis of red onion leaves by environmental stimuli and transient expression of transcription factors
Published in
Plant Cell Reports, March 2017
DOI 10.1007/s00299-017-2132-1
Pubmed ID
Authors

Elizabeth J. Wiltshire, Colin C. Eady, David A. Collings

Abstract

Novel imaging approaches have allowed measurements of the anthocyanin induction in onion epidermal cells that can be induced through water stress or transient expression of exogenous transcription factors. Environmental and genetic mechanisms that allow the normally colourless inner epidermal cells of red onion (Allium cepa) bulbs to accumulate anthocyanin were quantified by both absorbance ratios and fluorescence. We observed that water-stressing excised leaf segments induced anthocyanin formation, and fluorescence indicated that this anthocyanin was spectrally similar to the anthocyanin in the outer epidermal cells. This environmental induction may require a signal emanating from the leaf mesophyll, as induction did not occur in detached epidermal peels. Exogenous transcription factors that successfully drive anthocyanin biosynthesis in other species were also tested through transient gene expression using particle bombardment. Although the petunia R2R3-MYB factor AN2 induced anthocyanin in both excised leaves and epidermal peels, several transcription factors including maize C1 and Lc inhibited normal anthocyanin development in excised leaves. This inhibition may be due to moderate levels of conservation between the exogenous transcription factors and endogenous Allium transcription factors. The over-expressed exogenous transcription factors cannot drive anthocyanin biosynthesis themselves, but bind to the endogenous transcription factors and prevent them from driving anthocyanin biosynthesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 19%
Student > Bachelor 2 13%
Student > Postgraduate 2 13%
Lecturer 1 6%
Professor 1 6%
Other 3 19%
Unknown 4 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 25%
Chemistry 3 19%
Biochemistry, Genetics and Molecular Biology 2 13%
Environmental Science 2 13%
Engineering 2 13%
Other 0 0%
Unknown 3 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 March 2020.
All research outputs
#13,032,628
of 22,962,258 outputs
Outputs from Plant Cell Reports
#1,477
of 2,193 outputs
Outputs of similar age
#149,416
of 308,953 outputs
Outputs of similar age from Plant Cell Reports
#32
of 47 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,193 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,953 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.