↓ Skip to main content

In Brachypodium a complex signaling is actuated to protect cells from proteotoxic stress and facilitate seed filling

Overview of attention for article published in Planta, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
Title
In Brachypodium a complex signaling is actuated to protect cells from proteotoxic stress and facilitate seed filling
Published in
Planta, March 2017
DOI 10.1007/s00425-017-2687-7
Pubmed ID
Authors

Sang-Jin Kim, Starla Zemelis-Durfee, Curtis Wilkerson, Federica Brandizzi

Abstract

A conserved UPR machinery is required for Brachypodium ER stress resistance and grain filling. Human and livestock diets depend on the accumulation of cereal storage proteins and carbohydrates, including mixed-linkage glucan (MLG), in the endosperm during seed development. Storage proteins and proteins responsible for the production of carbohydrates are synthesized in the endoplasmic reticulum (ER). Unfavorable conditions during growth that hamper the ER biosynthetic capacity, such as heat, can cause a potentially lethal condition known as ER stress, which activates the unfolded protein response (UPR), a signaling response designed to mitigate ER stress. The UPR relies primarily on a conserved ER-associated kinase and ribonuclease, IRE1, which splices the mRNA of a transcription factor (TF), such as bZIP60 in plants, to produce an active TF that controls the expression of ER resident chaperones. Here, we investigated activation of the UPR in Brachypodium, as a model to study the UPR in seeds of a monocotyledon species, as well as the consequences of heat stress on MLG deposition in seeds. We identified a Brachypodium bZIP60 orthologue and determined a positive correlation between bZIP60 splicing and ER stress induced by chemicals and heat. Each stress condition led to transcriptional modulation of several BiP genes, supporting the existence of condition-specific BiP regulation. Finally, we found that the UPR is elevated at the early stage of seed development and that MLG production is negatively affected by heat stress via modulation of MLG synthase accumulation. We propose that successful accomplishment of seed filling is strongly correlated with the ability of the plant to sustain ER stress via the UPR.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 19%
Student > Ph. D. Student 2 13%
Student > Master 2 13%
Student > Doctoral Student 1 6%
Student > Bachelor 1 6%
Other 2 13%
Unknown 5 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 38%
Biochemistry, Genetics and Molecular Biology 4 25%
Medicine and Dentistry 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2017.
All research outputs
#3,222,700
of 22,962,258 outputs
Outputs from Planta
#106
of 2,731 outputs
Outputs of similar age
#61,796
of 309,402 outputs
Outputs of similar age from Planta
#3
of 30 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,731 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,402 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.