↓ Skip to main content

Lake and watershed influences on the distribution of elemental contaminants in the Rideau Canal System, a UNESCO world heritage site

Overview of attention for article published in Environmental Science and Pollution Research, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
24 Mendeley
Title
Lake and watershed influences on the distribution of elemental contaminants in the Rideau Canal System, a UNESCO world heritage site
Published in
Environmental Science and Pollution Research, April 2015
DOI 10.1007/s11356-015-4405-y
Pubmed ID
Authors

Shannon S. M. Stuyt, E. Emily V. Chapman, Linda M. Campbell

Abstract

Watershed-specific variables such as sediment particle size distribution, water depth, sedimentation rate, focusing factors, and catchment area to lake area ratio can affect the distribution of trace element contaminants to lakes. The aim of this study was to investigate sources of metals to three headwater lakes and to quantify effects of watershed-specific variables on spatial and temporal trends of trace elements (As, Cd, Co, Cr, Cu, Hg, K, Ni, Pb, Rb, and Zn) in sediments and mercury (Hg) concentrations in fish. Surface sediment and water samples were used to characterize spatial patterns, while sediment cores were collected to portray temporal trends. Historical trends of Hg in northern pike (Esox lucius) were assessed in relation to paleolimnological trends of sediment Hg concentrations. Similarity in timing of sediment peak trace element concentrations for the lakes suggests large-scale, atmospheric sources. The lake with highest catchment area-to-lake area ratio was consistently associated with highest sediment elemental concentrations and displayed significant correlations between increased sediment Hg concentrations and decreased pike tissue concentrations over time. This suggests that catchment area-to-lake area ratio is an important factor influencing the concentration of atmospherically derived contaminants within lake sediments and their transfer through the food web.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Master 4 17%
Researcher 3 13%
Student > Bachelor 3 13%
Other 2 8%
Other 1 4%
Unknown 7 29%
Readers by discipline Count As %
Environmental Science 11 46%
Arts and Humanities 2 8%
Veterinary Science and Veterinary Medicine 1 4%
Business, Management and Accounting 1 4%
Engineering 1 4%
Other 1 4%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2017.
All research outputs
#19,440,618
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#5,443
of 9,883 outputs
Outputs of similar age
#197,427
of 266,817 outputs
Outputs of similar age from Environmental Science and Pollution Research
#96
of 179 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,817 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 179 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.