↓ Skip to main content

Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain

Overview of attention for article published in Cellular and Molecular Life Sciences, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
240 Dimensions

Readers on

mendeley
152 Mendeley
Title
Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain
Published in
Cellular and Molecular Life Sciences, April 2017
DOI 10.1007/s00018-017-2513-1
Pubmed ID
Authors

Zhi-Jun Zhang, Bao-Chun Jiang, Yong-Jing Gao

Abstract

Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 152 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 152 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 20%
Student > Master 19 13%
Researcher 17 11%
Student > Bachelor 16 11%
Student > Doctoral Student 14 9%
Other 18 12%
Unknown 38 25%
Readers by discipline Count As %
Neuroscience 39 26%
Medicine and Dentistry 27 18%
Biochemistry, Genetics and Molecular Biology 12 8%
Pharmacology, Toxicology and Pharmaceutical Science 11 7%
Agricultural and Biological Sciences 8 5%
Other 14 9%
Unknown 41 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2017.
All research outputs
#18,530,416
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,334
of 4,151 outputs
Outputs of similar age
#223,413
of 311,321 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#33
of 48 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,321 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.