↓ Skip to main content

The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn and Cu) in Relation to Diabetes Management and Antioxidant Indices in Diabetic Rats

Overview of attention for article published in Biological Trace Element Research, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
71 Mendeley
Title
The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn and Cu) in Relation to Diabetes Management and Antioxidant Indices in Diabetic Rats
Published in
Biological Trace Element Research, April 2016
DOI 10.1007/s12011-016-0696-1
Pubmed ID
Authors

Ewelina Król, Magdalena Jeszka-Skowron, Zbigniew Krejpcio, Ewa Flaczyk, Rafał W. Wójciak

Abstract

Mulberry leaves (Morus alba) have been used in folk medicine to mitigate symptoms of diabetes. The mulberry plant contains phenolic compounds that are able to decrease blood glucose concentration. Since various phenolics have antioxidant and metal binding properties, they can be used to alleviate oxidative stress and chelate trace elements involved in redox reactions. The aim of this study was to evaluate the effects of dietary supplementation with mulberry leaf extracts (acetone-water (AE) and ethanol-water (EE)) on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in high-fat diet-fed/STZ diabetic rats. The experiment was performed on 38 male Wistar rats with diabetes (induced by high-fat diet (HF) and streptozotocin injection) or the control fed with AIN-93M or high-fat diet. As a result, five experimental groups were used: (1) a healthy control group fed with AIN-93M; (2) an HF control group; (3) a diabetic HF group; (4) a diabetic HF + AE group (6 g/kg diet); (5) a diabetic HF + EE group (6 g/kg diet). The rats were fed with appropriate diets for 4 weeks. The content of trace elements (Fe, Zn and Cu) in the serum and tissues was measured by means of atomic absorption spectrometry (AAS). Biochemical analyses (glucose, TBARS, FRAP) were performed on the blood serum. It was shown that the AE decreased hepatic and renal Fe stores, while the EE increased hepatic Cu levels in diabetic rats and confirmed their ability to regulate the Fe and Cu status in diabetes. The results confirmed a significant hypoglycaemic and antioxidant potential of both mulberry leaf extracts in diabetic rats.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 1%
Unknown 70 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 14%
Student > Master 8 11%
Student > Bachelor 6 8%
Researcher 6 8%
Student > Doctoral Student 4 6%
Other 7 10%
Unknown 30 42%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 9 13%
Agricultural and Biological Sciences 8 11%
Chemistry 7 10%
Biochemistry, Genetics and Molecular Biology 2 3%
Unspecified 1 1%
Other 5 7%
Unknown 39 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 February 2021.
All research outputs
#15,453,139
of 22,963,381 outputs
Outputs from Biological Trace Element Research
#1,078
of 2,035 outputs
Outputs of similar age
#181,093
of 301,231 outputs
Outputs of similar age from Biological Trace Element Research
#10
of 33 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,035 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,231 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.