↓ Skip to main content

Current advances in the development of natural meniscus scaffolds: innovative approaches to decellularization and recellularization

Overview of attention for article published in Cell and Tissue Research, March 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
90 Mendeley
Title
Current advances in the development of natural meniscus scaffolds: innovative approaches to decellularization and recellularization
Published in
Cell and Tissue Research, March 2017
DOI 10.1007/s00441-017-2605-0
Pubmed ID
Authors

Yunbin Chen, Jiaxin Chen, Zeng Zhang, Kangliang Lou, Qi Zhang, Shengyu Wang, Jinhu Ni, Wenyue Liu, Shunwu Fan, Xianfeng Lin

Abstract

The increasing rate of injuries to the meniscus indicates the urgent need to develop effective repair strategies. Irreparably damaged menisci can be replaced and meniscus allografts represent the treatment of choice; however, they have several limitations, including availability and compatibility. Another approach is the use of artificial implants but their chondroprotective activities are still not proved clinically. In this situation, tissue engineering offers alternative natural decellularized extracellular matrix (ECM) scaffolds, which have shown biomechanical properties comparable to those of native menisci and are characterized by low immunogenicity and promising regenerative potential. In this article, we present an overview of meniscus decellularization methods and discuss their relative merits. In addition, we comparatively evaluate cell types used to repopulate decellularized scaffolds and analyze the biocompatibility of the existing experimental models. At present, acellular ECM hydrogels, as well as slices and powders, have been explored, which seems to be promising for partial meniscus regeneration. However, their inferior biomechanical properties (compressive and tensile stiffness) compared to natural menisci should be improved. Although an optimal decellularized meniscus scaffold still needs to be developed and thoroughly validated for its regenerative potential in vivo, we believe that decellularized ECM scaffolds are the future biomaterials for successful structural and functional replacement of menisci.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 14%
Student > Master 12 13%
Student > Bachelor 12 13%
Student > Doctoral Student 9 10%
Researcher 7 8%
Other 8 9%
Unknown 29 32%
Readers by discipline Count As %
Medicine and Dentistry 15 17%
Engineering 12 13%
Biochemistry, Genetics and Molecular Biology 7 8%
Agricultural and Biological Sciences 5 6%
Chemistry 4 4%
Other 14 16%
Unknown 33 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2017.
All research outputs
#16,061,913
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#1,468
of 2,279 outputs
Outputs of similar age
#196,660
of 311,153 outputs
Outputs of similar age from Cell and Tissue Research
#18
of 27 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,153 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.