↓ Skip to main content

Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension

Overview of attention for article published in Basic Research in Cardiology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
31 Mendeley
Title
Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension
Published in
Basic Research in Cardiology, April 2017
DOI 10.1007/s00395-017-0620-7
Pubmed ID
Authors

Claudio Schuoler, Thomas J. Haider, Caroline Leuenberger, Johannes Vogel, Louise Ostergaard, Grazyna Kwapiszewska, Malcolm Kohler, Max Gassmann, Lars C. Huber, Matthias Brock

Abstract

Vascular remodelling in hypoxia-induced pulmonary hypertension (PH) is driven by excessive proliferation and migration of endothelial and smooth muscle cells. The expression of aquaporin 1 (AQP1), an integral membrane water channel protein involved in the control of these processes, is tightly regulated by oxygen levels. The role of AQP1 in the pathogenesis of PH, however, has not been directly addressed so far. This study was designed to characterize expression and function of AQP1 in pulmonary vascular cells from human arteries and in the mouse model of hypoxia-induced PH. Exposure of human pulmonary vascular cells to hypoxia significantly induced the expression of AQP1. Similarly, levels of AQP1 were found to be upregulated in lungs of mice with hypoxia-induced PH. The functional role of AQP1 was further tested in human pulmonary artery smooth muscle cells demonstrating that depletion of AQP1 reduced proliferation, the migratory potential, and, conversely, increased apoptosis of these cells. This effect was associated with higher expression of the tumour suppressor gene p53. Using the mouse model of hypoxia-induced PH, application of GapmeR inhibitors targeting AQP1 abated the hypoxia-induced upregulation of AQP1 and, of note, reversed PH by decreasing both right ventricular pressure and hypertrophy back to the levels of control mice. Our data suggest an important functional role of AQP1 in the pathobiology of hypoxia-induced PH. These results offer novel insights in our pathogenetic understanding of the disease and propose AQP1 as potential therapeutic in vivo target.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 16%
Student > Master 5 16%
Student > Ph. D. Student 4 13%
Student > Bachelor 4 13%
Professor > Associate Professor 3 10%
Other 3 10%
Unknown 7 23%
Readers by discipline Count As %
Medicine and Dentistry 7 23%
Biochemistry, Genetics and Molecular Biology 6 19%
Agricultural and Biological Sciences 5 16%
Nursing and Health Professions 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2017.
All research outputs
#18,541,268
of 22,963,381 outputs
Outputs from Basic Research in Cardiology
#524
of 649 outputs
Outputs of similar age
#235,821
of 310,038 outputs
Outputs of similar age from Basic Research in Cardiology
#5
of 12 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 649 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.