↓ Skip to main content

In vivo comparison of local versus systemic delivery of immunostimulating siRNA in HPV‐driven tumours

Overview of attention for article published in Immunology & Cell Biology, November 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
2 X users
patent
4 patents

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vivo comparison of local versus systemic delivery of immunostimulating siRNA in HPV‐driven tumours
Published in
Immunology & Cell Biology, November 2013
DOI 10.1038/icb.2013.75
Pubmed ID
Authors

Norliana Khairuddin, Stephen J Blake, Farah Firdaus, Raymond J Steptoe, Mark A Behlke, Paul J Hertzog, Nigel AJ McMillan

Abstract

Small interfering RNAs (siRNAs) to inhibit oncogene expression and also to activate innate immune responses via Toll-like receptor (TLR) recognition have been shown to be beneficial as anti-cancer therapy in certain cancer models. In this study, we investigated the effects of local versus systemic delivery of such immune-stimulating Dicer-substrate siRNAs (IS-DsiRNAs) on a human papillomavirus (HPV)-driven tumour model. Localized siRNA delivery using intratumour injection of siRNA was able to increase siRNA delivery to the tumour compared with intravenous (IV) delivery and potently activated innate immune responses. However, IV injection remained the more effective delivery route for reducing tumour growth. Although IS-DsiRNAs activated innate immune cells and required interferon-α (IFNα) for full effect on tumour growth, we found that potent silencing siRNA acting independently of IFNα were overall more effective at inhibiting TC-1 tumour growth. Other published work utilising IS-siRNAs have been carried out on tumour models with low levels of major histocompatibility complex (MHC)-class 1, a target of natural killer cells that are potently activated by IS-siRNA. As TC-1 cells used in our study express high levels of MHC-class I, the addition of the immunostimulatory motifs may not be as beneficial in this particular tumour model. Our data suggest that selection of siRNA profile and delivery method based on tumour environment is crucial to developing siRNA-based therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 26%
Researcher 4 17%
Student > Bachelor 2 9%
Librarian 1 4%
Other 1 4%
Other 2 9%
Unknown 7 30%
Readers by discipline Count As %
Medicine and Dentistry 7 30%
Biochemistry, Genetics and Molecular Biology 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Agricultural and Biological Sciences 2 9%
Chemistry 1 4%
Other 0 0%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2021.
All research outputs
#3,561,374
of 25,374,647 outputs
Outputs from Immunology & Cell Biology
#292
of 1,848 outputs
Outputs of similar age
#31,866
of 224,664 outputs
Outputs of similar age from Immunology & Cell Biology
#4
of 30 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,848 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 224,664 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.