↓ Skip to main content

A Novel GBA2 Gene Missense Mutation in Spastic Ataxia

Overview of attention for article published in Annals of Human Genetics, November 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
60 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Novel GBA2 Gene Missense Mutation in Spastic Ataxia
Published in
Annals of Human Genetics, November 2013
DOI 10.1111/ahg.12045
Pubmed ID
Authors

Christina Votsi, Eleni Zamba‐Papanicolaou, Lefkos T. Middleton, Marios Pantzaris, Kyproula Christodoulou

Abstract

Autosomal recessive cerebellar ataxias (ARCA) encompass a heterogeneous group of rare diseases that affect the cerebellum, the spinocerebellar tract and/or the sensory tracts of the spinal cord. We investigated a consanguineous Cypriot family with spastic ataxia, aiming towards identification of the causative mutation. Family members were clinically evaluated and studied at the genetic level. Linkage analysis at marker loci spanning known ARCA genes/loci revealed linkage to the APTX locus. Thorough investigation of the APTX gene excluded any possible mutation. Whole genome linkage screening using microsatellite markers and whole genome SNP homozygosity mapping using the Affymetrix Genome-Wide Human SNP Array 6.0 enabled mapping of the disease gene/mutation in this family to Chromosome 9p21.1-p13.2. Due to the large number of candidate genes within this region, whole-exome sequencing of the proband was performed and further analysis of the obtained data focused on the mapped interval. Further investigation of the candidate variants resulted in the identification of a novel missense mutation in the GBA2 gene. GBA2 mutations have recently been associated with hereditary spastic paraplegia and ARCA with spasticity. We hereby report a novel GBA2 mutation associated with spastic ataxia and suggest that GBA2 mutations may be a relatively frequent cause of ARCA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Master 8 13%
Student > Ph. D. Student 7 12%
Student > Doctoral Student 6 10%
Student > Bachelor 4 7%
Other 10 17%
Unknown 12 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 17%
Medicine and Dentistry 10 17%
Agricultural and Biological Sciences 6 10%
Neuroscience 5 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 11 18%
Unknown 16 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2014.
All research outputs
#16,047,334
of 25,374,647 outputs
Outputs from Annals of Human Genetics
#647
of 969 outputs
Outputs of similar age
#185,995
of 315,467 outputs
Outputs of similar age from Annals of Human Genetics
#4
of 10 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 969 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,467 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.