↓ Skip to main content

Is the Cry1Ab Protein from Bacillus thuringiensis (Bt) Taken Up by Plants from Soils Previously Planted with Bt Corn and by Carrot from Hydroponic Culture?

Overview of attention for article published in Bulletin of Environmental Contamination and Toxicology, May 2009
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
31 Mendeley
Title
Is the Cry1Ab Protein from Bacillus thuringiensis (Bt) Taken Up by Plants from Soils Previously Planted with Bt Corn and by Carrot from Hydroponic Culture?
Published in
Bulletin of Environmental Contamination and Toxicology, May 2009
DOI 10.1007/s00128-009-9760-2
Pubmed ID
Authors

I. Icoz, D. Andow, C. Zwahlen, G. Stotzky

Abstract

The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of fresh leaves plus stems and roots, respectively. No Cry1Ab protein was detected in the tissues of carrot grown in hydroponic culture to which no Cry1Ab protein had been added. Because of the different results obtained with different commercial Western blot (i.e., from Envirologix and Agdia) and ELISA kits (i.e., from Envirologix, Agdia, and Abraxis), it is not clear whether the presence of the Cry1Ab protein in the tissues of some plants under field condition and in carrot in sterile hydroponic culture was the result of the uptake of the protein by the plants or of the accuracy and sensitivity of the different commercial kits used. More detailed studies with additional techniques are obviously needed to confirm the uptake of Cry proteins from soil by plants subsequently planted after a Bt crop.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Brazil 1 3%
Unknown 29 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 26%
Student > Master 3 10%
Student > Doctoral Student 3 10%
Professor 3 10%
Student > Bachelor 2 6%
Other 7 23%
Unknown 5 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 48%
Environmental Science 4 13%
Unspecified 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 3 10%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2013.
All research outputs
#3,915,413
of 24,119,703 outputs
Outputs from Bulletin of Environmental Contamination and Toxicology
#241
of 4,112 outputs
Outputs of similar age
#14,967
of 95,273 outputs
Outputs of similar age from Bulletin of Environmental Contamination and Toxicology
#1
of 12 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,112 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 95,273 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.