↓ Skip to main content

Negligible effect of eNOS palmitoylation on fatty acid regulation of contraction in ventricular myocytes from healthy and hypertensive rats

Overview of attention for article published in Pflügers Archiv - European Journal of Physiology, April 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
7 Mendeley
Title
Negligible effect of eNOS palmitoylation on fatty acid regulation of contraction in ventricular myocytes from healthy and hypertensive rats
Published in
Pflügers Archiv - European Journal of Physiology, April 2017
DOI 10.1007/s00424-017-1979-x
Pubmed ID
Authors

Chun Li Jin, Yu Na Wu, Ji Hyun Jang, Zai Hao Zhao, Goo Taeg Oh, Sung Joon Kim, Yin Hua Zhang

Abstract

S-palmitoylation is an important post-translational modification that affects the translocation and the activity of target proteins in a variety of cell types including cardiomyocytes. Since endothelial nitric oxide synthase (eNOS) is known to be palmitoylated and the activity of eNOS is essential in fatty acid-dependent β-oxidation in muscle, we aimed to test whether palmitoylation of eNOS is involved in palmitic acid (PA) regulation of left ventricular (LV) myocyte contraction from healthy (sham) and hypertensive (HTN) rats. Our results showed that PA, a predominant metabolic substrate for cardiac β-oxidation, significantly increased contraction and oxygen consumption rate (OCR) in LV myocytes from sham. Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) or eNOS gene deletion prevented PA regulation of the myocyte contraction or OCR, indicating the pivotal role of eNOS in mediating the effects of PA in cardiac myocytes. PA increased the palmitoylation of eNOS in LV myocytes and depalmitoylation with 2-bromopalmitate (2BP; 100 μM) abolished the increment. Furthermore, although PA did not increase eNOS-Ser(1177), 2BP reduced eNOS-Ser(1177) with and without PA. Intriguingly, PA-induced increases in contraction and OCR were unaffected by 2BP treatment. In HTN, PA did not affect eNOS palmitoylation, eNOS-Ser(1177), or myocyte contraction. However, 2BP diminished eNOS palmitoylation and eNOS-Ser(1177) in the presence and absence of PA but did not change myocyte contraction. Collectively, our results confirm eNOS palmitoylation in LV myocytes from sham and HTN rats and its upregulation by PA in sham. However, such post-transcriptional modification plays negligible role in PA regulation of myocyte contraction and mitochondrial activity in sham and HTN.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Professor 2 29%
Student > Master 2 29%
Student > Bachelor 1 14%
Student > Ph. D. Student 1 14%
Lecturer 1 14%
Other 0 0%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 43%
Chemistry 1 14%
Neuroscience 1 14%
Medicine and Dentistry 1 14%
Unknown 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2017.
All research outputs
#21,164,509
of 23,818,521 outputs
Outputs from Pflügers Archiv - European Journal of Physiology
#1,798
of 1,973 outputs
Outputs of similar age
#271,511
of 311,249 outputs
Outputs of similar age from Pflügers Archiv - European Journal of Physiology
#15
of 25 outputs
Altmetric has tracked 23,818,521 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,973 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.