↓ Skip to main content

Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds

Overview of attention for article published in Toxins, December 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
4 X users
facebook
3 Facebook pages

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
130 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds
Published in
Toxins, December 2013
DOI 10.3390/toxins5122456
Pubmed ID
Authors

Kartik Sunagar, Eivind A. B. Undheim, Angelo H. C. Chan, Ivan Koludarov, Sergio A. Muñoz-Gómez, Agostinho Antunes, Bryan G. Fry

Abstract

The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent's worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 130 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 <1%
Turkey 1 <1%
Honduras 1 <1%
Australia 1 <1%
Unknown 126 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 19%
Student > Master 20 15%
Researcher 14 11%
Student > Bachelor 13 10%
Student > Doctoral Student 12 9%
Other 28 22%
Unknown 18 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 55 42%
Biochemistry, Genetics and Molecular Biology 24 18%
Pharmacology, Toxicology and Pharmaceutical Science 9 7%
Immunology and Microbiology 4 3%
Chemistry 3 2%
Other 9 7%
Unknown 26 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2023.
All research outputs
#3,008,097
of 23,578,918 outputs
Outputs from Toxins
#303
of 3,663 outputs
Outputs of similar age
#35,758
of 310,824 outputs
Outputs of similar age from Toxins
#4
of 54 outputs
Altmetric has tracked 23,578,918 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,663 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,824 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.