↓ Skip to main content

Prenatal pharmacotherapy rescues brain development in a Down’s syndrome mouse model

Overview of attention for article published in Brain, December 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
5 news outlets
blogs
3 blogs
twitter
25 X users
facebook
3 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
105 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prenatal pharmacotherapy rescues brain development in a Down’s syndrome mouse model
Published in
Brain, December 2013
DOI 10.1093/brain/awt340
Pubmed ID
Authors

Sandra Guidi, Fiorenza Stagni, Patrizia Bianchi, Elisabetta Ciani, Andrea Giacomini, Marianna De Franceschi, Randal Moldrich, Nyoman Kurniawan, Karine Mardon, Alessandro Giuliani, Laura Calzà, Renata Bartesaghi

Abstract

Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.

X Demographics

X Demographics

The data shown below were collected from the profiles of 25 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 105 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
United States 2 2%
Italy 1 <1%
Spain 1 <1%
Germany 1 <1%
Unknown 98 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 22%
Student > Bachelor 18 17%
Student > Ph. D. Student 15 14%
Student > Master 11 10%
Professor > Associate Professor 7 7%
Other 11 10%
Unknown 20 19%
Readers by discipline Count As %
Medicine and Dentistry 20 19%
Agricultural and Biological Sciences 13 12%
Psychology 13 12%
Neuroscience 12 11%
Biochemistry, Genetics and Molecular Biology 9 9%
Other 11 10%
Unknown 27 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 80. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2016.
All research outputs
#531,952
of 25,374,917 outputs
Outputs from Brain
#443
of 7,626 outputs
Outputs of similar age
#5,168
of 320,160 outputs
Outputs of similar age from Brain
#2
of 63 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,626 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.7. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,160 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.