↓ Skip to main content

High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model

Overview of attention for article published in Brain Imaging and Behavior, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
61 Mendeley
Title
High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model
Published in
Brain Imaging and Behavior, May 2017
DOI 10.1007/s11682-017-9727-6
Pubmed ID
Authors

Enyan Yu, Zhengluan Liao, Yunfei Tan, Yaju Qiu, Junpeng Zhu, Zhang Han, Jue Wang, Xinwei Wang, Hong Wang, Yan Chen, Qi Zhang, Yumei Li, Dewang Mao, Zhongxiang Ding

Abstract

Many functional magnetic resonance imaging (fMRI) studies have indicated that Granger causality analysis (GCA) is a suitable method for revealing causal effects between brain regions. The purpose of the present study was to identify neuroimaging biomarkers with a high sensitivity to amnestic mild cognitive impairment (aMCI). The resting-state fMRI data of 30 patients with Alzheimer's disease (AD), 14 patients with aMCI, and 18 healthy controls (HC) were evaluated using GCA. This study focused on the "triple networks" concept, a recently proposed higher-order functioning-related brain network model that includes the default-mode network (DMN), salience network (SN), and executive control network (ECN). As expected, GCA techniques were able to reveal differences in connectivity in the three core networks among the three patient groups. The fMRI data were pre-processed using DPARSFA v2.3 and REST v1.8. Voxel-wise GCA was performed using the REST-GCA in the REST toolbox. The directed (excitatory and inhibitory) connectivity obtained from GCA could differentiate among the AD, aMCI and HC groups. This result suggests that analysing the directed connectivity of inter-hemisphere connections represents a sensitive method for revealing connectivity changes observed in patients with aMCI. Specifically, inhibitory within-DMN connectivity from the posterior cingulate cortex (PCC) to the hippocampal formation and from the thalamus to the PCC as well as excitatory within-SN connectivity from the dorsal anterior cingulate cortex (dACC) to the striatum, from the ECN to the DMN, and from the SN to the ECN demonstrated that changes in connectivity likely reflect compensatory effects in aMCI. These findings suggest that changes observed in the triple networks may be used as sensitive neuroimaging biomarkers for the early detection of aMCI.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 21%
Researcher 7 11%
Student > Ph. D. Student 7 11%
Student > Bachelor 5 8%
Other 2 3%
Other 4 7%
Unknown 23 38%
Readers by discipline Count As %
Neuroscience 12 20%
Psychology 10 16%
Medicine and Dentistry 5 8%
Nursing and Health Professions 2 3%
Mathematics 1 2%
Other 4 7%
Unknown 27 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2017.
All research outputs
#2,965,754
of 22,968,808 outputs
Outputs from Brain Imaging and Behavior
#152
of 1,155 outputs
Outputs of similar age
#56,188
of 310,917 outputs
Outputs of similar age from Brain Imaging and Behavior
#5
of 34 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,155 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,917 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.