↓ Skip to main content

Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Fallén)

Overview of attention for article published in Virology Journal, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
43 Mendeley
Title
Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Fallén)
Published in
Virology Journal, May 2017
DOI 10.1186/s12985-017-0732-6
Pubmed ID
Authors

Qiufang Xu, Haoqiu Liu, Pingping Yuan, Xiaoxia Zhang, Qingqing Chen, Xuanli Jiang, Yijun Zhou

Abstract

The small brown planthopper (SBPH) is an important pest of cereal crops and acts as a transmission vector for multiple RNA viruses. Rapid diagnosis of virus in the vector is crucial for efficient forecast and control of viral disease. Reverse transcription polymerase chain reaction (RT-PCR) is a rapid, sensitive and reliable method for virus detection. The traditional RT-PCR contains a RNA isolation step and is widely used for virus detection in insect. However, using the traditional RT-PCR for detecting RNA virus in individual SBPHs becomes challenging because of the expensive reagents and laborious procedure associated with RNA isolation when processing a large number of samples. We established a simplified RT-PCR method without RNA isolation for RNA virus detection in a single SBPH. This method is achieved by grinding a single SBPH in sterile water and using the crude extract directly as the template for RT-PCR. The crude extract containing the virus RNA can be prepared in approximately two minutes. Rice stripe virus (RSV), rice black streaked dwarf virus (RBSDV) and Himetobi P virus (HiPV) were successfully detected using this simplified method. The detection results were validated by sequencing and dot immunobinding assay, indicating that this simplified method is reliable for detecting different viruses in insects. The evaluation of the sensitivity of this method showed that both RSV and HiPV can be detected when the cDNA from the crude extract was diluted up to 10(3) fold. Compared to the traditional RT-PCR with RNA isolation, the simplified RT-PCR method greatly reduces the sample processing time, decreases the detection cost, and improves the efficiency by avoiding RNA isolation. A simplified RT-PCR method is developed for rapid detection of RNA virus in a single SBPH without the laborious RNA isolation step. It offers a convenient alternative to the traditional RT-PCR method.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 26%
Student > Bachelor 4 9%
Student > Master 4 9%
Student > Ph. D. Student 4 9%
Professor 2 5%
Other 4 9%
Unknown 14 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 23%
Biochemistry, Genetics and Molecular Biology 6 14%
Environmental Science 2 5%
Immunology and Microbiology 2 5%
Engineering 2 5%
Other 5 12%
Unknown 16 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2020.
All research outputs
#14,934,072
of 22,968,808 outputs
Outputs from Virology Journal
#1,831
of 3,057 outputs
Outputs of similar age
#184,794
of 310,917 outputs
Outputs of similar age from Virology Journal
#27
of 51 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,057 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,917 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.