↓ Skip to main content

Role of Imaging in Cardio-Oncology

Overview of attention for article published in Current Treatment Options in Cardiovascular Medicine, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
61 Mendeley
Title
Role of Imaging in Cardio-Oncology
Published in
Current Treatment Options in Cardiovascular Medicine, May 2017
DOI 10.1007/s11936-017-0546-2
Pubmed ID
Authors

Erick Avelar, Caitlin R. Strickland, Guido Rosito

Abstract

Recent advances in cancer treatment and research have greatly improved survival rates for patients with cancer. However, many of these cancer survivors are developing cardiac disease-most commonly heart failure as a result of this treatment. Certain chemotherapeutic agents, including anthracyclines and trastuzumab, have been linked to cardiotoxicity-induced cardiomyopathy in cancer patients. It has been reported as early as during infusion and as late as several years following treatment. Radiation therapy, particularly to the left breast, has also been linked to cardiac disease. The responsibility of cardiac monitoring has traditionally fallen on oncologists using assessment of LVEF through multigated acquisition (MUGA) scans or echocardiograms. The "formal" definition of cardiotoxicity, as a 5 to 10% decrease in LVEF from its baseline, even though not validated, is currently used by clinicians to alter treatment, but it has been recently challenged, as a possible irreversible late stage of a myocardial insult. Furthermore, it falls into the interobserver variability range of echocardiography. The growing field of medicine called cardio-oncology is based on emerging research that has shown that more advanced imaging modalities can help detect cardiotoxicity early, allowing the patient to receive treatment and avoid developing heart failure from cancer treatment. While traditional imaging still has its place in cardiac monitoring, cardiac magnetic resonance imaging is the most accurate and detailed imaging modality available to assess cardiotoxicity. Our own pilot cardiac MRI study suggests that a normal left ventricular remodeling to chemotherapy, when patients have not developed heart failure symptoms, could occur over time. Perhaps, knowing a baseline normal response could help us to define a more accurate definition of cardiotoxicity by CMR. Here, we discuss various imaging modalities and emerging techniques that can assist in detecting early signs of cardiotoxicity and thus reduce the incidence of cardiac disease in cancer survivors.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 16%
Student > Postgraduate 10 16%
Student > Master 7 11%
Student > Bachelor 6 10%
Researcher 6 10%
Other 13 21%
Unknown 9 15%
Readers by discipline Count As %
Medicine and Dentistry 37 61%
Nursing and Health Professions 3 5%
Biochemistry, Genetics and Molecular Biology 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Agricultural and Biological Sciences 1 2%
Other 6 10%
Unknown 11 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2018.
All research outputs
#3,223,783
of 22,968,808 outputs
Outputs from Current Treatment Options in Cardiovascular Medicine
#64
of 416 outputs
Outputs of similar age
#60,997
of 310,942 outputs
Outputs of similar age from Current Treatment Options in Cardiovascular Medicine
#3
of 16 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 416 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,942 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.