↓ Skip to main content

Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach

Overview of attention for article published in Molecular Neurobiology, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
21 Mendeley
Title
Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach
Published in
Molecular Neurobiology, May 2017
DOI 10.1007/s12035-017-0546-y
Pubmed ID
Authors

Aman Chandra Kaushik, Ajay Kumar, Vivek Dhar Dwivedi, Shiv Bharadwaj, Sanjay Kumar, Kritika Bharti, Pavan Kumar, Ravi Kumar Chaudhary, Sarad Kumar Mishra

Abstract

Alzheimer's disease (AD) pathogenesis leads to the appearance of senile plaques due to the production and deposition of the β-amyloid peptide (Aβ). Superparamagnetic iron oxide nanoparticles (SPIONs) have potential role in the detection and imaging of Aβ plaques in AD. SPIONs have shown appropriate potential in the diagnosis and treatment of AD. In the present study, the pharmacokinetics of SPIONs and its effect in the biochemical pathway of AD were analyzed using collected information. During analysis, the interaction of SPIONs with amyloid beta-42 (Aβ42), a biomarker for AD progression, has been shown. Nodes represent the entities and edges represent the relation (interactions) of one node to another node. Aβ42 and their interaction with other entities making up biochemical network are involved in AD mechanism in presence of SPION. The kinetic simulation was done to investigate pharmacokinetics of SPIONs for AD, where concentration was assigned of nanoparticles and other entities were applied as a kinetic irreversible simple Michaelis-Menten or mass action kinetics. Simulation was done in presence and absence of SPIONs to investigate pharmacokinetic effect in AD and explore the mechanism of Aβ42 in presence of SPIONs. This study may lead to better understanding, which is required to target the metabolism of Aß42 peptide, a pivotal player in this pathology.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 19%
Researcher 4 19%
Student > Doctoral Student 2 10%
Student > Bachelor 2 10%
Unspecified 1 5%
Other 2 10%
Unknown 6 29%
Readers by discipline Count As %
Engineering 4 19%
Agricultural and Biological Sciences 2 10%
Nursing and Health Professions 1 5%
Unspecified 1 5%
Medicine and Dentistry 1 5%
Other 3 14%
Unknown 9 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2017.
All research outputs
#4,299,207
of 23,344,526 outputs
Outputs from Molecular Neurobiology
#889
of 3,539 outputs
Outputs of similar age
#74,735
of 311,413 outputs
Outputs of similar age from Molecular Neurobiology
#32
of 129 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,539 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,413 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 129 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.