↓ Skip to main content

Perinatal Exposure to Western Diet Programs Autonomic Dysfunction in the Male Offspring

Overview of attention for article published in Cellular and Molecular Neurobiology, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
55 Mendeley
Title
Perinatal Exposure to Western Diet Programs Autonomic Dysfunction in the Male Offspring
Published in
Cellular and Molecular Neurobiology, May 2017
DOI 10.1007/s10571-017-0502-4
Pubmed ID
Authors

Snigdha Mukerjee, Yun Zhu, Andrea Zsombok, Franck Mauvais-Jarvis, Jinying Zhao, Eric Lazartigues

Abstract

Although the deleterious influence of protein deficiency on fetal programming is well documented, the impact of a Western diet on epigenetic mechanisms is less clear. We hypothesized that high-fat high-sucrose diet (HFHSD) consumption during pregnancy leads to epigenetic modifications within the progeny's compensatory renin-angiotensin system (RAS), affecting autonomic and metabolic functions. Dams were fed HFHSD (45% fat and 30% sucrose) or regular chow (RD) from mating until weaning of the pups (~7 weeks). Offspring from both groups were then maintained on chow and studied in adulthood (3-7 months). Offspring from HFHSD-exposed dams (OH) exhibited no difference in body weight or fasting blood glucose compared to controls (OR). In 3-month-old offspring, DNA methylation was significantly lower for the ACE2 gene (P < 0.05) in the brainstem, kidney and cecum. Moreover, ACE2 activity in the hypothalamus was increased at 7 months (OH: 91 ± 1 vs. OR: 74 ± 4 AFU/mg/min, P < 0.05). Although baseline blood pressure was not different between groups, vagal tone in OH was significantly impaired compared to OR. At the same time, OH offspring had a 1.7-fold increase in AT1a receptor expression and a 1.3-fold increase in ADAM17 mRNA. DOCA-salt treatment further revealed and exacerbated hypertensive response in the OH progeny (OH: 130 ± 6 vs. OR: 108 ± 3 mmHg, P < 0.05). Taken together, our data suggest that perinatal exposure to HFHSD resulted in epigenetic modifications of the compensatory brain RAS, potentially affecting plasticity of neuronal networks leading to autonomic dysfunction in the male offspring.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 20%
Student > Bachelor 6 11%
Student > Master 6 11%
Researcher 6 11%
Professor 3 5%
Other 6 11%
Unknown 17 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 18%
Medicine and Dentistry 9 16%
Nursing and Health Professions 3 5%
Neuroscience 3 5%
Engineering 3 5%
Other 9 16%
Unknown 18 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 March 2018.
All research outputs
#3,574,395
of 25,263,619 outputs
Outputs from Cellular and Molecular Neurobiology
#121
of 1,090 outputs
Outputs of similar age
#60,929
of 316,681 outputs
Outputs of similar age from Cellular and Molecular Neurobiology
#1
of 16 outputs
Altmetric has tracked 25,263,619 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,090 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,681 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.