↓ Skip to main content

Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
74 Mendeley
Title
Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase
Published in
Biotechnology for Biofuels and Bioproducts, May 2017
DOI 10.1186/s13068-017-0794-0
Pubmed ID
Authors

Venkatachalam Narayanan, Jenny Schelin, Marie Gorwa-Grauslund, Ed WJ van Niel, Magnus Carlquist

Abstract

Production of second-generation bioethanol and other bulk chemicals by yeast fermentation requires cells that tolerate inhibitory lignocellulosic compounds at low pH. Saccharomyces cerevisiae displays high plasticity with regard to inhibitor tolerance, and adaptation of cell populations to process conditions is essential for reaching efficient and robust fermentations. In this study, we assessed responses of isogenic yeast cell populations in different physiological states to combinations of acetic acid, vanillin and furfural at low pH. We found that cells in early stationary phase (ESP) exhibited significantly increased tolerance compared to cells in logarithmic phase, and had a similar ability to initiate growth in the presence of inhibitors as pre-adapted cells. The ESP cultures consisted of subpopulations with different buoyant cell densities which were isolated with flotation and analysed separately. These so-called quiescent (Q) and non-quiescent (NQ) cells were found to possess similar abilities to initiate growth in the presence of lignocellulosic inhibitors at pH 3.7, and had similar viabilities under static conditions. Therefore, differentiation into Q-cells was not the cause for increased tolerance of ESP cultures. Flow cytometry analysis of cell viability, intracellular pH and reactive oxygen species levels revealed that tolerant cell populations had a characteristic response upon inhibitor perturbations. Growth in the presence of a combination of inhibitors at low pH correlated with pre-cultures having a high frequency of cells with low pHi and low ROS levels. Furthermore, only a subpopulation of ESP cultures was able to tolerate lignocellulosic inhibitors at low pH, while pre-adapted cell populations displayed an almost uniform high tolerance to the adverse condition. This was in stark contrast to cell populations growing exponentially in non-inhibitory medium that were uniformly sensitive to the inhibitors at low pH. ESP cultures of S. cerevisiae were found to have high tolerance to lignocellulosic inhibitors at low pH, and were able to initiate growth to the same degree as cells that were pre-adapted to inhibitors at a slightly acidic pH. Carbon starvation may thus be a potential strategy to prepare cell populations for adjacent stressful environments which may be beneficial from a process perspective for fermentation of non-detoxified lignocellulosic substrates at low pH. Furthermore, flow cytometry analysis of pHi and ROS level distributions in ESP cultures revealed responses that were characteristic for populations with high tolerance to lignocellulosic inhibitors. Measurement of population distribution responses as described herein may be applied to predict the outcome of environmental perturbations and thus can function as feedback for process control of yeast fitness during lignocellulosic fermentation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 1%
Unknown 73 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 20%
Student > Master 12 16%
Student > Bachelor 12 16%
Researcher 7 9%
Student > Doctoral Student 6 8%
Other 8 11%
Unknown 14 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 28%
Biochemistry, Genetics and Molecular Biology 18 24%
Engineering 4 5%
Chemical Engineering 3 4%
Immunology and Microbiology 2 3%
Other 6 8%
Unknown 20 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2017.
All research outputs
#17,289,387
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#996
of 1,578 outputs
Outputs of similar age
#206,518
of 324,351 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#48
of 62 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,351 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.