↓ Skip to main content

Probing the Flexibility of the DsbA Oxidoreductase from Vibrio cholerae—a 15N - 1H Heteronuclear NMR Relaxation Analysis of Oxidized and Reduced Forms of DsbA

Overview of attention for article published in Journal of Molecular Biology, May 2007
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Probing the Flexibility of the DsbA Oxidoreductase from Vibrio cholerae—a 15N - 1H Heteronuclear NMR Relaxation Analysis of Oxidized and Reduced Forms of DsbA
Published in
Journal of Molecular Biology, May 2007
DOI 10.1016/j.jmb.2007.05.067
Pubmed ID
Authors

James Horne, Edward J. d’Auvergne, Murray Coles, Tony Velkov, Yanni Chin, William N. Charman, Richard Prankerd, Paul R. Gooley, Martin J. Scanlon

Abstract

We have determined the structure of the reduced form of the DsbA oxidoreductase from Vibrio cholerae. The reduced structure shows a high level of similarity to the crystal structure of the oxidized form and is typical of this class of enzyme containing a thioredoxin domain with an inserted alpha-helical domain. Proteolytic and thermal stability measurements show that the reduced form of DsbA is considerably more stable than the oxidized form. NMR relaxation data have been collected and analyzed using a model-free approach to probe the dynamics of the reduced and oxidized states of DsbA. Akaike's information criteria have been applied both in the selection of the model-free models and the diffusion tensors that describe the global motions of each redox form. Analysis of the dynamics reveals that the oxidized protein shows increased disorder on the pico- to nanosecond and micro- to millisecond timescale. Many significant changes in dynamics are located either close to the active site or at the insertion points between the domains. In addition, analysis of the diffusion data shows there is a clear difference in the degree of interdomain movement between oxidized and reduced DsbA with the oxidized form being the more rigid. Principal components analysis has been employed to indicate possible concerted movements in the DsbA structure, which suggests that the modeled interdomain motions affect the catalytic cleft of the enzyme. Taken together, these data provide compelling evidence of a role for dynamics in the catalytic cycle of DsbA.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
New Zealand 1 3%
Australia 1 3%
Unknown 37 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 26%
Student > Ph. D. Student 10 26%
Student > Bachelor 4 10%
Professor 3 8%
Other 2 5%
Other 7 18%
Unknown 3 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 38%
Chemistry 9 23%
Biochemistry, Genetics and Molecular Biology 7 18%
Environmental Science 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2014.
All research outputs
#20,656,161
of 25,373,627 outputs
Outputs from Journal of Molecular Biology
#11,202
of 11,922 outputs
Outputs of similar age
#77,542
of 83,011 outputs
Outputs of similar age from Journal of Molecular Biology
#114
of 115 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,922 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 2nd percentile – i.e., 2% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 83,011 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 3rd percentile – i.e., 3% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 115 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.