↓ Skip to main content

Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype

Overview of attention for article published in Molecular Neurobiology, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
88 Mendeley
Title
Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype
Published in
Molecular Neurobiology, May 2017
DOI 10.1007/s12035-017-0618-z
Pubmed ID
Authors

Gerardo Rosciszewski, Vanesa Cadena, Veronica Murta, Jeronimo Lukin, Alejandro Villarreal, Thierry Roger, Alberto Javier Ramos

Abstract

Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1β and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the ischemic penumbra. While TREM-2+ macrophages were abundant at 3 days post-lesion (DPL) in the ischemic core, TREM-2+ astrocytes persisted in the penumbra until 14DPL. This study demonstrates that TLR4 expression increases astroglial sensitivity to ligands facilitating astrocyte conversion towards a proinflammatory phenotype, and that astroglial TREM-2 modulates this response reducing the downstream NF-κB activation. Therefore, the availability of TLR4 and TREM-2 ligands in the ischemic environment may control proinflammatory astroglial conversion to the neurodegenerative phenotype.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 26%
Student > Bachelor 14 16%
Researcher 11 13%
Student > Doctoral Student 6 7%
Student > Master 5 6%
Other 12 14%
Unknown 17 19%
Readers by discipline Count As %
Neuroscience 22 25%
Biochemistry, Genetics and Molecular Biology 15 17%
Medicine and Dentistry 9 10%
Agricultural and Biological Sciences 4 5%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Other 10 11%
Unknown 24 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2017.
All research outputs
#20,425,762
of 22,977,819 outputs
Outputs from Molecular Neurobiology
#2,813
of 3,479 outputs
Outputs of similar age
#272,981
of 313,676 outputs
Outputs of similar age from Molecular Neurobiology
#95
of 124 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,479 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,676 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 124 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.