↓ Skip to main content

microRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells

Overview of attention for article published in Methods in Cell Science, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
13 Mendeley
Title
microRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells
Published in
Methods in Cell Science, May 2017
DOI 10.1007/s10616-017-0108-1
Pubmed ID
Authors

Haitao Xie, Qiugui Zhang, Hui Zhou, Jun Zhou, Ji Zhang, Yan Jiang, Jinghong Wang, Xianglin Meng, Leping Zeng, Xiaoxin Jiang

Abstract

Major histocompatibility complex class I chain-related gene B (MICB) is expressed on tumor cells and participates in natural killer (NK) cell-mediated antitumor immune response through engagement with the NKG2D receptor. This study was undertaken to identify novel microRNA (miRNA) regulators of MICB and clarify their functions in NK cell-mediated cytotoxicity to hepatocellular carcinoma (HCC) cells. Bioinformatic analysis and luciferase reporter assay were conducted to search for MICB-targeting miRNAs. Overexpression and knockdown experiments were performed to determine the roles of candidate miRNAs in the susceptibility of HCC cells to NK lysis. miR-889 was identified as a novel MICB-targeting miRNA and overexpression of miR-889 significantly inhibited the mRNA and protein expression of MICB in HepG2 and SMMC7721 HCC cells. miR-889 expression had a negative correlation with MICB mRNA levels in HCC specimens (r = -0.392, P = 0.0146). NK cell-mediated cytotoxicity was reduced in miR-889-overexpressing HCC cells, which was reversed by restoration of MICB expression. In contrast, knockdown of miR-889 led to more pronounced NK cell-mediated lysis in HCC cells. HCC cells exposed to the histone deacetylase (HDAC) inhibitor sodium valproate showed downregulation of miR-889. Enforced expression of miR-889 prevented the upregulation of MICB and enhancement of NK cell-mediated lysis by HDAC inhibitors. In conclusion, miR-889 upregulation attenuates the susceptibility of HCC cells to NK lysis and represents a potential target for improving NK cell-based antitumor therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 8%
Unknown 12 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Researcher 2 15%
Student > Master 2 15%
Student > Bachelor 1 8%
Other 1 8%
Other 0 0%
Unknown 4 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 23%
Immunology and Microbiology 2 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Other 0 0%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2017.
All research outputs
#19,962,154
of 25,394,764 outputs
Outputs from Methods in Cell Science
#842
of 1,026 outputs
Outputs of similar age
#236,923
of 327,217 outputs
Outputs of similar age from Methods in Cell Science
#5
of 11 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,026 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,217 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.