↓ Skip to main content

Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections

Overview of attention for article published in Journal of Neuro-Oncology, January 2014
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#8 of 2,967)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
9 news outlets
patent
2 patents

Citations

dimensions_citation
125 Dimensions

Readers on

mendeley
110 Mendeley
Title
Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections
Published in
Journal of Neuro-Oncology, January 2014
DOI 10.1007/s11060-013-1326-9
Pubmed ID
Authors

Steven N. Kalkanis, Rachel E. Kast, Mark L. Rosenblum, Tom Mikkelsen, Sally M. Yurgelevic, Katrina M. Nelson, Aditya Raghunathan, Laila M. Poisson, Gregory W. Auner

Abstract

The need exists for a highly accurate, efficient and inexpensive tool to distinguish normal brain tissue from glioblastoma multiforme (GBM) and necrosis boundaries rapidly, in real-time, in the operating room. Raman spectroscopy provides a unique biochemical signature of a tissue type, with the potential to provide intraoperative identification of tumor and necrosis boundaries. We aimed to develop a database of Raman spectra from normal brain, GBM, and necrosis, and a methodology for distinguishing these pathologies. Raman spectroscopy was used to measure 95 regions from 40 frozen tissue sections using 785 nm excitation wavelength. Review of adjacent hematoxylin and eosin sections confirmed histology of each region. Three regions each of normal grey matter, necrosis, and GBM were selected as a training set. Ten regions were selected as a validation set, with a secondary validation set of tissue regions containing freeze artifact. Grey matter contained higher lipid (1061, 1081 cm(-1)) content, whereas necrosis revealed increased protein and nucleic acid content (1003, 1206, 1239, 1255-1266, 1552 cm(-1)). GBM fell between these two extremes. Discriminant function analysis showed 99.6, 97.8, and 77.5% accuracy in distinguishing tissue types in the training, validation, and validation with freeze artifact datasets, respectively. Decreased classification in the freeze artifact group was due to tissue preparation damage. This study shows the potential of Raman spectroscopy to accurately identify normal brain, necrosis, and GBM as a tool to augment pathologic diagnosis. Future work will develop mapped images of diffuse glioma and neoplastic margins toward development of an intraoperative surgical tool.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 110 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 17%
Researcher 16 15%
Student > Master 14 13%
Student > Bachelor 9 8%
Student > Doctoral Student 7 6%
Other 16 15%
Unknown 29 26%
Readers by discipline Count As %
Medicine and Dentistry 21 19%
Engineering 14 13%
Biochemistry, Genetics and Molecular Biology 11 10%
Chemistry 8 7%
Neuroscience 5 5%
Other 17 15%
Unknown 34 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 68. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2022.
All research outputs
#525,809
of 22,788,370 outputs
Outputs from Journal of Neuro-Oncology
#8
of 2,967 outputs
Outputs of similar age
#5,879
of 305,073 outputs
Outputs of similar age from Journal of Neuro-Oncology
#1
of 31 outputs
Altmetric has tracked 22,788,370 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,967 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,073 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.