↓ Skip to main content

Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem

Overview of attention for article published in Mycotoxin Research, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
40 Mendeley
Title
Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem
Published in
Mycotoxin Research, June 2017
DOI 10.1007/s12550-017-0282-1
Pubmed ID
Authors

Friederike Meyer-Wolfarth, Stefan Schrader, Elisabeth Oldenburg, Joachim Weinert, Joachim Brunotte

Abstract

In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Bachelor 5 13%
Researcher 5 13%
Student > Master 4 10%
Student > Doctoral Student 1 3%
Other 4 10%
Unknown 14 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 33%
Environmental Science 4 10%
Philosophy 1 3%
Business, Management and Accounting 1 3%
Psychology 1 3%
Other 2 5%
Unknown 18 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 June 2017.
All research outputs
#15,464,404
of 22,979,862 outputs
Outputs from Mycotoxin Research
#154
of 238 outputs
Outputs of similar age
#199,236
of 317,335 outputs
Outputs of similar age from Mycotoxin Research
#2
of 5 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 238 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,335 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.