↓ Skip to main content

Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins

Overview of attention for article published in BMC Genomics, June 2017
Altmetric Badge

Mentioned by

twitter
4 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
94 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins
Published in
BMC Genomics, June 2017
DOI 10.1186/s12864-017-3816-1
Pubmed ID
Authors

Inês Mendes, Isabelle Sanchez, Ricardo Franco-Duarte, Carole Camarasa, Dorit Schuller, Sylvie Dequin, Maria João Sousa

Abstract

During must fermentation thousands of volatile aroma compounds are formed, with higher alcohols, acetate esters and ethyl esters being the main aromatic compounds contributing to floral and fruity aromas. The action of yeast, in particular Saccharomyces cerevisiae, on the must components will build the architecture of the wine flavour and its fermentation bouquet. The objective of the present work was to better understand the molecular and metabolic bases of aroma production during a fermentation process. For such, comparative transcriptomic and metabolic analysis was performed at two time points (5 and 50 g/L of CO2 released) in fermentations conducted by four yeast strains from different origins and/or technological applications (cachaça, sake, wine, and laboratory), and multivariate factorial analyses were used to rationally identify new targets for improving aroma production. Results showed that strains from cachaça, sake and wine produced higher amounts of acetate esters, ethyl esters, acids and higher alcohols, in comparison with the laboratory strain. At fermentation time T1 (5 g/L CO2 released), comparative transcriptomics of the three S. cerevisiae strains from different fermentative environments in comparison with the laboratory yeast S288c, showed an increased expression of genes related with tetracyclic and pentacyclic triterpenes metabolism, involved in sterol synthesis. Sake strain also showed upregulation of genes ADH7 and AAD6, involved in the formation of higher alcohols in the Ehrlich pathway. For fermentation time point T2 (50 g/L CO2 released), again sake strain, but also VL1 strain, showed an increased expression of genes involved in formation of higher alcohols in the Ehrlich pathway, namely ADH7, ADH6 and AAD6, which is in accordance with the higher levels of methionol, isobutanol, isoamyl alcohol and phenylethanol observed. Our approach revealed successful to integrate data from several technologies (HPLC, GC-MS, microarrays) and using different data analysis methods (PCA, MFA). The results obtained increased our knowledge on the production of wine aroma and flavour, identifying new gene in association to the formation of flavour active compounds, mainly in the production of fatty acids, and ethyl and acetate esters.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 94 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 19%
Student > Master 15 16%
Student > Ph. D. Student 14 15%
Student > Bachelor 6 6%
Student > Doctoral Student 5 5%
Other 15 16%
Unknown 21 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 38%
Biochemistry, Genetics and Molecular Biology 18 19%
Engineering 4 4%
Chemistry 3 3%
Immunology and Microbiology 2 2%
Other 7 7%
Unknown 24 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 February 2018.
All research outputs
#15,464,404
of 22,979,862 outputs
Outputs from BMC Genomics
#6,719
of 10,687 outputs
Outputs of similar age
#199,236
of 317,335 outputs
Outputs of similar age from BMC Genomics
#145
of 218 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,687 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,335 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 218 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.